1
|
Vila-Julià G, Rubio-Martinez J, Perez JJ. Assessment of the bound conformation of bombesin to the BB1 and BB2 receptors. Int J Biol Macromol 2024; 255:127843. [PMID: 37956803 DOI: 10.1016/j.ijbiomac.2023.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Bombesin is an endogenous peptide involved in a wide spectrum of physiological activities ranging from satiety, control of circadian rhythm and thermoregulation in the central nervous system, to stimulation of gastrointestinal hormone release, activation of macrophages and effects on development in peripheral tissues. Actions of the peptide are mediated through the two high affinity G-protein coupled receptors BB1R and BB2R. Under pathophysiological conditions, these receptors are overexpressed in many different types of tumors, such as prostate cancer, breast cancer, small and non-small cell lung cancer and pancreatic cancer. This observation has been used for designing cell markers, but it has not been yet exploited for therapeutical purposes. Despite the enormous biological interest of the peptide, little is known about the stereochemical features that contribute to their activity. On the one hand, mutagenesis studies identified a few receptor residues important for high bombesin affinity and on the other, a few studies focused on the relevance of diverse residues of the peptide for receptor activation. Models of the peptide bound to BB1R and BB2R can be helpful to improve our understanding of the stereochemical features granting bombesin activity. Accordingly, the present study describes the computational process followed to construct such models by means of Steered Molecular Dynamics, using models of the peptide and its receptors. Present results provide new insights into the structure-activity relationships of bombesin and its receptors, as well as render an explanation for the differential binding affinity observed towards BB1R and BB2R. Finally, these models can be further exploited to help for designing novel small molecule peptidomimetics with improved pharmacokinetics profile.
Collapse
Affiliation(s)
- Guillem Vila-Julià
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Barcelona, Spain; Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech., Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), Barcelona, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech., Av. Diagonal, 647, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Cell Mol Life Sci 2022; 79:58. [PMID: 34997336 PMCID: PMC8741697 DOI: 10.1007/s00018-021-04086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Mutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive–active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.
Collapse
|
3
|
Duraisamy K, Singh K, Kumar M, Lefranc B, Bonnafé E, Treilhou M, Leprince J, Chow BKC. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J Allergy Clin Immunol 2022; 149:275-291. [PMID: 34111449 DOI: 10.1016/j.jaci.2021.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND P17, a peptide isolated from Tetramorium bicarinatum ant venom, is known to induce an alternative phenotype of human monocyte-derived macrophages via activation of an unknown G protein-coupled receptor (GPCR). OBJECTIVE We sought to investigate the mechanism of action and the immunomodulatory effects of P17 mediated through MRGPRX2 (Mas-related G protein-coupled receptor X2). METHODS To identify the GPCR for P17, we screened 314 GPCRs. Upon identification of MRGPRX2, a battery of in silico, in vitro, ex vivo, and in vivo assays along with the receptor mutation studies were performed. In particular, to investigate the immunomodulatory actions, we used β-hexosaminidase release assay, cytokine releases, quantification of mRNA expression, cell migration and differentiation assays, immunohistochemical labeling, hematoxylin and eosin, and immunofluorescence staining. RESULTS P17 activated MRGPRX2 in a dose-dependent manner in β-arrestin recruitment assay. In LAD2 cells, P17 induced calcium and β-hexosaminidase release. Quercetin- and short hairpin RNA-mediated knockdown of MRGPRX2 reduced P17-evoked β-hexosaminidase release. In silico and in vitro mutagenesis studies showed that residue Lys8 of P17 formed a cation-π interaction with the Phe172 of MRGPRX2 and [Ala8]P17 lost its activity partially. P17 activated LAD2 cells to recruit THP-1 and human monocytes in Transwell migration assay, whereas MRGPRX2-impaired LAD2 cells cannot. In addition, P17-treated LAD2 cells stimulated differentiation of THP-1 and human monocytes, as indicated by the enhanced expression of macrophage markers cluster of differentiation 11b and TNF-α by quantitative RT-PCR. Immunohistochemical and immunofluorescent staining suggested monocyte recruitment in mice ears injected with P17. CONCLUSIONS Our data provide novel structural information regarding the interaction of P17 with MRGPRX2 and intracellular pathways for its immunomodulatory action.
Collapse
Affiliation(s)
- Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Jabeen A, Vijayram R, Ranganathan S. A two-stage computational approach to predict novel ligands for a chemosensory receptor. Curr Res Struct Biol 2021; 2:213-221. [PMID: 34235481 PMCID: PMC8244491 DOI: 10.1016/j.crstbi.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 11/01/2022] Open
Abstract
Olfactory receptor (OR) 1A2 is the member of largest superfamily of G protein-coupled receptors (GPCRs). OR1A2 is an ectopically expressed receptor with only 13 known ligands, implicated in reducing hepatocellular carcinoma progression, with enormous therapeutic potential. We have developed a two-stage screening approach to identify novel putative ligands of OR1A2. We first used a pharmacophore model based on atomic property field (APF) to virtually screen a library of 5942 human metabolites. We then carried out structure-based virtual screening (SBVS) for predicting the potential agonists, based on a 3D homology model of OR1A2. This model was developed using a biophysical approach for template selection, based on multiple parameters including hydrophobicity correspondence, applied to the complete set of available GPCR structures to pick the most appropriate template. Finally, the membrane-embedded 3D model was refined by molecular dynamics (MD) simulations in both the apo and holo forms. The refined model in the apo form was selected for SBVS. Four novel small molecules were identified as strong binders to this olfactory receptor on the basis of computed binding energies.
Collapse
Key Words
- APF, Atomic property field
- Amber, Assisted model Building with Energy Refinement
- Atomic property field
- Binding free energy calculation
- CSF, Cerebrospinal fluid
- ECL, Extracellular loop
- GPCR, G protein coupled receptor
- HCMV, Human cytomegalovirus
- HMDB, Human metabolome database
- Hydrophobicity correspondence
- LBVS, Ligand based virtual screening
- LC, Lung carcinoids
- MD, Molecular dynamics
- MMGBSA, Molecular mechanics generalized born surface area
- MMPBSA, Molecular mechanics Poisson–Boltzmann surface area
- Molecular dynamics
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Nonalcoholic steatohepatitis
- OR, olfactory receptor
- OR1A2
- Olfactory receptor
- PMEMD, Particle-Mesh Ewald Molecular Dynamics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphatidylcholine
- RMSD, Root mean square deviation
- RMSF, Root mean square fluctuation
- SBVS, Structure based virtual screening
- SSD, Sum of squared difference
- TM, Transmembrane
- Virtual ligand screening
Collapse
Affiliation(s)
- Amara Jabeen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramya Vijayram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
5
|
Razzaghi N, Fernandez-Gonzalez P, Mas-Sanchez A, Vila-Julià G, Perez JJ, Garriga P. Effect of Sodium Valproate on the Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin. Molecules 2021; 26:molecules26103032. [PMID: 34069614 PMCID: PMC8160834 DOI: 10.3390/molecules26103032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin is the G protein-coupled receptor of rod photoreceptor cells that mediates vertebrate vision at low light intensities. Mutations in rhodopsin cause inherited retinal degenerative diseases such as retinitis pigmentosa. Several therapeutic strategies have attempted to address and counteract the deleterious effect of rhodopsin mutations on the conformation and function of this photoreceptor protein, but none has been successful in efficiently preventing retinal degeneration in humans. These approaches include, among others, the use of small molecules, known as pharmacological chaperones, that bind to the receptor stabilizing its proper folded conformation. Valproic acid, in its sodium valproate form, has been used as an anticonvulsant in epileptic patients and in the treatment of several psychiatric disorders. More recently, this compound has been tested as a potential therapeutic agent for the treatment of retinal degeneration associated with retinitis pigmentosa caused by rhodopsin mutations. We now report on the effect of sodium valproate on the conformational stability of heterologously expressed wild-type rhodopsin and a rhodopsin mutant, I307N, which has been shown to be an appropriate model for studying retinal degeneration in mice. We found no sign of enhanced stability for the dark inactive conformation of the I307N mutant. Furthermore, the photoactivated conformation of the mutant appears to be destabilized by sodium valproate as indicated by a faster decay of its active conformation. Therefore, our results support a destabilizing effect of sodium valproate on rhodopsin I307N mutant associated with retinal degeneration. These findings, at the molecular level, agree with recent clinical studies reporting negative effects of sodium valproate on the visual function of retinitis pigmentosa patients.
Collapse
Affiliation(s)
- Neda Razzaghi
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
| | - Pol Fernandez-Gonzalez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
| | - Aina Mas-Sanchez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
| | - Guillem Vila-Julià
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech., Avinguda Diagonal, 647, 08028 Barcelona, Spain; (G.V.-J.); (J.J.P.)
| | - Juan Jesus Perez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech., Avinguda Diagonal, 647, 08028 Barcelona, Spain; (G.V.-J.); (J.J.P.)
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain; (N.R.); (P.F.-G.); (A.M.-S.)
- Correspondence:
| |
Collapse
|
6
|
Korshunova K, Carloni P. Ligand Affinities within the Open-Boundary Molecular Mechanics/Coarse-Grained Framework (I): Alchemical Transformations within the Hamiltonian Adaptive Resolution Scheme. J Phys Chem B 2021; 125:789-797. [PMID: 33443434 DOI: 10.1021/acs.jpcb.0c09805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Our recently developed Open-Boundary Molecular Mechanics/Coarse Grained (OB-MM/CG) framework predicts ligand poses in important pharmaceutical targets, such as G-protein Coupled Receptors, even when experimental structural information is lacking. The approach, which is based on GROMOS and AMBER force fields, allows for grand-canonical simulations of protein-ligand complexes by using the Hamiltonian Adaptive Resolution Scheme (H-AdResS) for the solvent. Here, we present a key step toward the estimation of ligand binding affinities for their targets within this approach. This is the implementation of the H-AdResS in the GROMACS code. The accuracy of our implementation is established by calculating hydration free energies of several molecules in water by means of alchemical transformations. The deviations of the GROMOS- and AMBER-based H-AdResS results from the reference fully atomistic simulations are smaller than the accuracy of the force field and/or they are in the range of the published results. Importantly, our predictions are in good agreement with experimental data. The current implementation paves the way to the use of the OB-MM/CG framework for the study of large biological systems.
Collapse
Affiliation(s)
- Ksenia Korshunova
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany.,Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52074 Aachen, Germany.,Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
7
|
Binding Mode Exploration of B1 Receptor Antagonists' by the Use of Molecular Dynamics and Docking Simulation-How Different Target Engagement Can Determine Different Biological Effects. Int J Mol Sci 2020; 21:ijms21207677. [PMID: 33081372 PMCID: PMC7590058 DOI: 10.3390/ijms21207677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/24/2023] Open
Abstract
The kinin B1 receptor plays a critical role in the chronic phase of pain and inflammation. The development of B1 antagonists peaked in recent years but almost all promising molecules failed in clinical trials. Little is known about these molecules' mechanisms of action and additional information will be necessary to exploit the potential of the B1 receptor. With the aim of contributing to the available knowledge of the pharmacology of B1 receptors, we designed and characterized a novel class of allosteric non-peptidic inhibitors with peculiar binding characteristics. Here, we report the binding mode analysis and pharmacological characterization of a new allosteric B1 antagonist, DFL20656. We analyzed the binding of DFL20656 by single point mutagenesis and radioligand binding assays and we further characterized its pharmacology in terms of IC50, B1 receptor internalization and in vivo activity in comparison with different known B1 antagonists. We highlighted how different binding modes of DFL20656 and a Merck compound (compound 14) within the same molecular pocket can affect the biological and pharmacological properties of B1 inhibitors. DFL20656, by its peculiar binding mode, involving tight interactions with N114, efficiently induced B1 receptor internalization and evoked a long-lasting effect in an in vivo model of neuropathic pain. The pharmacological characterization of different B1 antagonists highlighted the effects of their binding modes on activity, receptor occupancy and internalization. Our results suggest that part of the failure of most B1 inhibitors could be ascribed to a lack of knowledge about target function and engagement.
Collapse
|
8
|
Rasaeifar B, Gomez-Gutierrez P, Perez JJ. Molecular Features of Non-Selective Small Molecule Antagonists of the Bradykinin Receptors. Pharmaceuticals (Basel) 2020; 13:E259. [PMID: 32967280 PMCID: PMC7558388 DOI: 10.3390/ph13090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) downregulation is a key negative factor for the severity of lung edema and acute lung failure observed in patients infected with SARS-CoV-2. ACE2 downregulation affects the levels of diverse peptide mediators of the renin-agiotensin-aldestosterone and kallikrein-kinin systems, compromising vascular hemostasis. Increasing evidence suggests that the inflammatory response observed in covid-19 patients is initiated by the action of kinins on the bradykinin receptors. Accordingly, the use of bradykinin antagonists should be considered as a strategy for therapeutic intervention against covid-19 illness progression. Presently, icatibant is the only bradykinin antagonist drug approved. In the present report, we investigated the molecular features characterizing non-selective antagonists targeting the bradykinin receptors and carried out a in silico screening of approved drugs, aimed at the identification of compounds with a non-selective bradykinin antagonist profile that can be evaluated for drug repurposing. The study permitted to identify eight compounds as prospective non-selective antagonists of the bradykinin receptors, including raloxifene; sildenafil; cefepime; cefpirome; imatinib; ponatinib; abemaciclib and entrectinib.
Collapse
Affiliation(s)
| | | | - Juan J. Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya. ETSEIB. Av. Diagonal, 647, 08028 Barcelona, Spain; (B.R.); (P.G.-G.)
| |
Collapse
|
9
|
Schneider J, Ribeiro R, Alfonso-Prieto M, Carloni P, Giorgetti A. Hybrid MM/CG Webserver: Automatic Set Up of Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Receptor/Ligand Complexes. Front Mol Biosci 2020; 7:576689. [PMID: 33102525 PMCID: PMC7500467 DOI: 10.3389/fmolb.2020.576689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations help predict ligand poses in human G protein-coupled receptors (hGPCRs), the most important protein superfamily for pharmacological applications. This approach allows the description of the ligand, the binding cavity, and the surrounding water molecules at atomistic resolution, while coarse-graining the rest of the receptor. Here, we present the Hybrid MM/CG Webserver (mmcg.grs.kfa-juelich.de) that automatizes and speeds up the MM/CG simulation setup of hGPCR/ligand complexes. Initial structures for such complexes can be easily and efficiently generated with other webservers. The Hybrid MM/CG server also allows for equilibration of the systems, either fully automatically or interactively. The results are visualized online (using both interactive 3D visualizations and analysis plots), helping the user identify possible issues and modify the setup parameters accordingly. Furthermore, the prepared system can be downloaded and the simulation continued locally.
Collapse
Affiliation(s)
- Jakob Schneider
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-Institute: Molecular Neuroscience and Neuroimaging, Institute for Neuroscience and Medicine INM-11/JARA-BRAIN Institute JBI-2, Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Rui Ribeiro
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-Institute: Molecular Neuroscience and Neuroimaging, Institute for Neuroscience and Medicine INM-11/JARA-BRAIN Institute JBI-2, Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Rasaeifar B, Gomez-Gutierrez P, Perez JJ. New Insights into the Stereochemical Requirements of the Bombesin BB1 Receptor Antagonists Binding. Pharmaceuticals (Basel) 2020; 13:ph13080197. [PMID: 32824403 PMCID: PMC7463749 DOI: 10.3390/ph13080197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022] Open
Abstract
Members of the family of bombesinlike peptides exert a wide range of biological activities both at the central nervous system and in peripheral tissues through at least three G-Protein Coupled Receptors: BB1, BB2 and BB3. Despite the number of peptide ligands already described, only a few small molecule binders have been disclosed so far, hampering a deeper understanding of their pharmacology. In order to have a deeper understanding of the stereochemical features characterizing binding to the BB1 receptor, we performed the molecular modeling study consisting of the construction of a 3D model of the receptor by homology modeling followed by a docking study of the peptoids PD168368 and PD176252 onto it. Analysis of the complexes permitted us to propose prospective bound conformations of the compounds, consistent with the experimental information available. Subsequently, we defined a pharmacophore describing minimal stereochemical requirements for binding to the BB1 receptor that was used in silico screening. This exercise yielded a set of small molecules that were purchased and tested, showing affinity to the BB1 but not to the BB2 receptor. These molecules exhibit scaffolds of diverse chemical families that can be used as a starting point for the development of novel BB1 antagonists.
Collapse
|
11
|
Schneider J, Korshunova K, Si Chaib Z, Giorgetti A, Alfonso-Prieto M, Carloni P. Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-Based Hybrid Molecular Mechanics/Coarse-Grained Approach. J Chem Inf Model 2020; 60:5103-5116. [PMID: 32786708 DOI: 10.1021/acs.jcim.0c00661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human G protein-coupled receptors (hGPCRs) are the most frequent targets of Food and Drug Administration (FDA)-approved drugs. Structural bioinformatics, along with molecular simulation, can support structure-based drug design targeting hGPCRs. In this context, several years ago, we developed a hybrid molecular mechanics (MM)/coarse-grained (CG) approach to predict ligand poses in low-resolution hGPCR models. The approach was based on the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here, we present a new MM/CG implementation using, instead, the Amber 14SB and GAFF all-atom potentials for proteins and ligands, respectively. The new implementation outperforms the previous one, as shown by a variety of applications on models of hGPCR/ligand complexes at different resolutions, and it is also more user-friendly. Thus, it emerges as a useful tool to predict poses in low-resolution models and provides insights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower computational cost.
Collapse
Affiliation(s)
- Jakob Schneider
- Computational Biomedicine, Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52074 Aachen, Germany.,JARA-Institute: Molecular Neuroscience and Neuroimaging, Institute for Neuroscience and Medicine INM-11/JARA-BRAIN Institute JBI-2, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ksenia Korshunova
- Computational Biomedicine, Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Zeineb Si Chaib
- Computational Biomedicine, Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,RWTH Aachen University, 52062 Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Department of Biotechnology, University of Verona, 37314 Verona, Italy.,JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Cecile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52074 Aachen, Germany.,JARA-Institute: Molecular Neuroscience and Neuroimaging, Institute for Neuroscience and Medicine INM-11/JARA-BRAIN Institute JBI-2, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,JARA-HPC, IAS-5/INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
12
|
Leelananda SP, Lindert S. Using NMR Chemical Shifts and Cryo-EM Density Restraints in Iterative Rosetta-MD Protein Structure Refinement. J Chem Inf Model 2020; 60:2522-2532. [PMID: 31872764 PMCID: PMC7262651 DOI: 10.1021/acs.jcim.9b00932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryo-EM has become one of the prime methods for protein structure elucidation, frequently yielding density maps with near-atomic or medium resolution. If protein structures cannot be deduced unambiguously from the density maps, computational structure refinement tools are needed to generate protein structural models. We have previously developed an iterative Rosetta-MDFF protocol that used cryo-EM densities to refine protein structures. Here we show that, in addition to cryo-EM densities, incorporation of other experimental restraints into the Rosetta-MDFF protocol further improved refined structures. We used NMR chemical shift (CS) data integrated with cryo-EM densities in our hybrid protocol in both the Rosetta step and the molecular dynamics (MD) simulations step. In 15 out of 18 cases for all MD rounds, the refinement results obtained when density maps and NMR chemical shift data were used in combination outperformed those of density map-only refinement. Notably, the improvement in refinement was highest when medium and low-resolution density maps were used. With our hybrid method, the RMSDs of final models obtained were always better than the RMSDs obtained by our previous protocol with just density refinement for both medium (6.9 Å) and low (9 Å) resolution maps. For all the six test proteins with medium resolution density maps (6.9 Å), the final refined structure RMSDs were lower for the hybrid method than for the cryo-EM only refinement. The final refined RMSDs were less than 1.5 Å when our hybrid protocol was used with 4 Å density maps. For four out of the six proteins the final RMSDs were even less than 1 Å. This study demonstrates that by using a combination of cryo-EM and NMR restraints, it is possible to refine structures to atomic resolution, outperforming single restraint refinement. This hybrid protocol will be a valuable tool when only low-resolution cryo-EM density data and NMR chemical shift data are available to refine structures.
Collapse
Affiliation(s)
- Sumudu P. Leelananda
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
13
|
Alfonso-Prieto M, Navarini L, Carloni P. Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations. Front Mol Biosci 2019; 6:29. [PMID: 31131282 PMCID: PMC6510167 DOI: 10.3389/fmolb.2019.00029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
Human G-protein coupled receptors (GPCRs) convey a wide variety of extracellular signals inside the cell and they are one of the main targets for pharmaceutical intervention. Rational drug design requires structural information on these receptors; however, the number of experimental structures is scarce. This gap can be filled by computational models, based on homology modeling and docking techniques. Nonetheless, the low sequence identity across GPCRs and the chemical diversity of their ligands may limit the quality of these models and hence refinement using molecular dynamics simulations is recommended. This is the case for olfactory and bitter taste receptors, which constitute the first and third largest GPCR groups and show sequence identities with the available GPCR templates below 20%. We have developed a molecular dynamics approach, based on the combination of molecular mechanics and coarse grained (MM/CG), tailored to study ligand binding in GPCRs. This approach has been applied so far to bitter taste receptor complexes, showing significant predictive power. The protein/ligand interactions observed in the simulations were consistent with extensive mutagenesis and functional data. Moreover, the simulations predicted several binding residues not previously tested, which were subsequently verified by carrying out additional experiments. Comparison of the simulations of two bitter taste receptors with different ligand selectivity also provided some insights into the binding determinants of bitter taste receptors. Although the MM/CG approach has been applied so far to a limited number of GPCR/ligand complexes, the excellent agreement of the computational models with the mutagenesis and functional data supports the applicability of this method to other GPCRs for which experimental structures are missing. This is particularly important for the challenging case of GPCRs with low sequence identity with available templates, for which molecular docking shows limited predictive power.
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Paolo Carloni
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.,Institute for Neuroscience and Medicine INM-11, Forschungszentrum Jülich, Jülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
14
|
Molecular features characterizing non-peptide selectivity to the human B1 and B2 bradykinin receptors. Bioorg Med Chem Lett 2018; 29:11-14. [PMID: 30466897 DOI: 10.1016/j.bmcl.2018.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Bradykinin is produced in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases. Actions of this peptide are mediated through two different G-protein coupled receptors, named B1 and B2 that have different pharmacological characteristics. The former is up-regulated during inflammation episodes or tissue trauma whereas, the latter is constitutively expressed in a variety of cell types. In a previous work we have characterized the molecular features that explain the observed structure-activity results for both receptors by means of molecular modeling studies, using diverse ligands for both receptors. These results were summarized in the form of two different pharmacophores that provided new insights to be used for the design of novel molecules with antagonistic profile. In the present work, we compare these pharmacophores to understand the features that characterize ligand selectivity to the two bradykinin receptors. The study shows that most of the residues involved in the binding pocket are similar in both receptors and consequently are the pharmacophores obtained. The main difference between the two pharmacophores remains on point #5 that involves a polar moiety for the B1 receptor and an aromatic ring for the B2 receptor. Accordingly, analysis of the prospective bound conformation of several non-selective small molecule ligands of the bradykinin receptors permits to conclude that fulfilment of point#5 is a requirement to produce selective ligands. However, the study also shows that this is a necessary condition only, since ligands need also to be bulky enough to avoid binding to these receptors in diverse poses. These results provide new insights for a better understanding of the molecular features that ligands are required to exhibit to be selective bradykinin ligands.
Collapse
|