1
|
Li F, Xiang T, Jiang L, Cheng Y, Song G, Wang D, Yuan T, Li L, Chen F, Luo Z, Gong J. New insights into ultrasound-assisted noncovalent nanocomplexes of β-lactoglobulin and neochlorogenic acid/cryptochlorogenic acid and its potential application for curcumin loading. Food Res Int 2025; 199:115384. [PMID: 39658175 DOI: 10.1016/j.foodres.2024.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The cross-linking sites and structure of protein-polyphenol complexes are susceptible to the type, structure, weight of polyphenols under nonthermal process. The low bioavailability and poor gastrointestinal instability of curcumin (CUR) hampers its application. Hence, changes in binding mechanism, structural and functional properties between β-lactoglobulin (β-LG) with two different configurations of chlorogenic acids (neochlorogenic acids (3-CQA) and cryptochlorogenic acids (4-CQA) by non-covalent binding under ultrasonic treatment, and the potential capacity for loading CUR were researched. The binding affinity scores of β-LG-4CQA was -7.1 kcal/mol. It is higher than β-LG-3CQA (-6.8 kcal/mol), which implied that the interaction between β-LG and 4-CQA was stronger. Circular dichroism calculations showed that the sonicated complex of the β-LG and 4-CQA with a decreased content of α-helices by 5.4 %, β-sheets by 4.6 %, and an increased content of irregular curls by 8.4 % (p < 0.05). The result demonstrated ultrasound and the binding of β-LG to 3/4-CQA improved the hydrophilicity, thermal stability, and antioxidant property of β-LG. Furthermore, the embedding rate of CUR in the ultrasound-assisted β-LG-4-CQA complex could reach 71.56 %. Consistent with the structural characterization results, the CUR release rate of ULG-4-CQA + CUR complex reached 17.36 % in simulated intestinal digestion, which was 8.09 % higher than free CUR. Indicating that after embedding with protein-polyphenol complexes, the stability and bioaccessibility of CUR was improved. This study reveals the potential application of ultrasound-assisted protein-polyphenol complexes for loading CUR.
Collapse
Affiliation(s)
- Fang Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Taijiao Xiang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lie Jiang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, Zhejiang, China
| | - Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, SC 29634, USA
| | - Zisheng Luo
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
2
|
Rubinstein AJ, Garcia Liñares G, Boeris V, Pérez OE. An Innovative Bio-Vehicle for Resveratrol and Tocopherol Based on Quinoa 11S Globulin-Nanocomplex Design and Characterization. Pharmaceutics 2024; 16:1118. [PMID: 39339156 PMCID: PMC11434796 DOI: 10.3390/pharmaceutics16091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Nanocomplexes, which possess immense potential to function as nanovehicles, can link diverse ligand compounds. The objective of the present study was to design and characterize resveratrol (RSV)- and tocopherol (TOC)-loaded 11S quinoa seed protein nanocomplexes. Firstly, molecular docking was performed to describe the probable binding sites between protein and ligands, and binding energies of -5.6 and -6.2 kcal/mol were found for RSV and TOC, respectively. Isothermal titration calorimetry allowed us to obtain the thermodynamic parameters that described the molecular interactions between RSV or TOC with the protein, finding the complexation process to be exothermic and spontaneous. 11S globulin intrinsic fluorescence spectra showed quenching effects exerted by RSV and TOC, demonstrating protein-bioactive compound interactions. The application of Stern-Volmer, Scatchard, and Förster resonance energy transfer models confirmed static quenching and allowed us to obtain parameters that described the 11S-RSV and 11S-TOC complexation processes. RSV has a higher tendency to bind 11S globulin according to ITC and fluorescence analysis. Secondly, the protein aggregation induced by bioactive compound interactions was confirmed by dynamic light scattering and atomic force microscopy, with diameters <150 nm detected by both techniques. Finally, it was found that the antioxidant capacity of a single 11S globulin did not decrease; meanwhile, it was additive for 11S-RSV. These nanocomplexes could constitute a real platform for the design of nutraceutical products.
Collapse
Affiliation(s)
- Alejandra J. Rubinstein
- Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
| | - Guadalupe Garcia Liñares
- Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
| | - Valeria Boeris
- Área Fisicoquímica, Departamento de Química Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR)—CONICET, Suipacha 531, Rosario S2002LRK, Argentina;
| | - Oscar E. Pérez
- Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
| |
Collapse
|
3
|
Bustos LF, Vasile FE, Pérez OE. Experimental and in silico approaches for the buffalo whey protein-folic acid complexation elucidation. Molecular changes impacting on protein structure and functionality. Food Res Int 2024; 180:114062. [PMID: 38395554 DOI: 10.1016/j.foodres.2024.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Using a buffalo whey proteins concentrate (BWPC) as a nanocarrier of labile bioactive compounds as vitamins constitutes a very innovative approach with potential application in the food and nutraceutical industries. This work aims to deepen the knowledge of the phenomena occurring in the complexation process of vitamin B9 with BWPC, providing valuable information on the molecular and functional properties of complexes and intervening substances. For such purpose, analytical (SEC-FPLC, Fluorescence spectroscopy, FTIR, DLS, UV-vis spectroscopy) and in-silico methods (molecular docking) were performed to get complementary data. Five types of proteins were identified in the BWPC. Folic acid (FA) interacted with BWPC in buffer pH 7 through H-bonds and hydrophobic interactions, inducing conformational changes and modifying the secondary and tertiary protein structure. The resultant BWPC-FA complexes showed a size distribution in the nanoscale (100-150 nm) with no aggregation. Molecular docking showed that lactoferrin had the highest FA binding affinity. Complexation did not reduce the antioxidant activity of intervening substances. Indeed, the radical scavenging capacity of BWPC-FA was 20 % higher than single BWPC. The obtained results provide relevant data enabling the adding value of the main effluent of buffalo dairy industries.
Collapse
Affiliation(s)
- Leandro Fabián Bustos
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428 Buenos Aires, Argentina.
| | - Franco Emanuel Vasile
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina.
| | - Oscar Edgardo Pérez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428 Buenos Aires, Argentina.
| |
Collapse
|
4
|
Agarwal N, Fatima A, Bhattacharya P, Muthu S, Arora H, Siddiqui N, Javed S. Evaluation of experimental, computational, molecular docking and dynamic simulation of flucytosine. J Biomol Struct Dyn 2023; 41:10430-10449. [PMID: 36562198 DOI: 10.1080/07391102.2022.2159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Flucytosine (5-fluorocytosine), a fluorine derivative of pyrimidine, has been studied both experimentally and quantum chemically. To obtain the optimized structure, vibrational frequencies and other various parameters, the B3LYP method with a 6-311++G(d,p) basis set was used. Atom-in-molecule theory was used to calculate the binding energies, ellipticity and isosurface projection by electron localization of the molecule (AIM). In addition, the computational results from IR and Raman were compared with the experimental spectra. NBO analysis was used to analyze the donor and acceptor interactions. To know the reactive region of the molecule, the molecular electrostatic potential (MEP) and Fukui functions were determined. The UV-Vis spectrum calculated by the TD-DFT/PCM method was also compared with the experimentally determined spectrum. The HOMO-LUMO energy outcomes proved that there was a good charge exchange occurring within the molecule. With DMSO and MeOH as the solvents, maps of the hole and electron density distribution (EDD and HDD) were produced in an excited state. An electrophilicity index parameter was looked at to theoretically test the bioactivity of the compound. To find the best ligand-protein interactions, molecular docking was also carried out with various receptor proteins. In order to verify the inhibitory potency for the receptor protein complex predicted by docking and molecular dynamic simulation studies, the binding free energy of the receptor protein complex was calculated. Using the MM/GBSA technique, we determined the docked complex's binding free energy. To confirm the molecule's drug similarity, a biological drug similarity investigation was also executed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Agarwal
- Department of chemistry, Institute of H. Science, Dr. Bhimrao-Ambedkar University, Agra, Uttar Pradesh, India
| | - Aysha Fatima
- S.O.S in chemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | | - S Muthu
- Department of Physics, Aringnar Anna Government Arts College, Cheyyar, India
| | - Himanshu Arora
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nazia Siddiqui
- Department of Chemistry, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India
| | - Saleem Javed
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
5
|
Li S, Nie L, Wang Y, Wang Y, Fan D, Wang J, Hu Y, Dong L, Zhang Y, Wang S. Detection of β-lactoglobulin under different thermal-processing conditions by immunoassay based on nanobody and monoclonal antibody. Food Chem 2023; 424:136337. [PMID: 37209435 DOI: 10.1016/j.foodchem.2023.136337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
The problems of inaccurate detection values of thermal-processed β-lactoglobulin (β-LG) content seriously affect the screening of allergens. A monoclonal antibody (mAb) against β-LG was successfully prepared and a highly sensitive sandwich ELISA (sELISA) was constructed with specific nanobody (Nb) as the capture antibody with detection limit of 0.24 ng/mL. Based on this sELISA, the ability of Nb and mAb to recognize β-LG and β-LG interacting with milk components was explored. Combined with protein structure analysis to elaborate the mechanism of shielding β-LG antigen epitopes during thermal-processing, thus enabling the differentiation between pasteurized and ultra-high temperature sterilized milk, the detection of milk content in milk-containing beverages, and the highly sensitive detection and analysis of β-LG allergens in dairy-free products. The method provides methodological support for identifying the quality of dairy products and reducing the risk of β-LG contamination in dairy-free products.
Collapse
Affiliation(s)
- Shijie Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Linqing Nie
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - YaYa Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Vidotto DC, Tavares GM. Simultaneous binding of folic acid and lutein to β-lactoglobulin and α-lactalbumin: A spectroscopic and molecular docking study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Bustos LF, Judis MA, Vasile FE, Pérez OE. Molecular interactions involved in the complexation process between buffalo whey proteins concentrate and folic acid. Food Chem 2022; 396:133734. [PMID: 35870246 DOI: 10.1016/j.foodchem.2022.133734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Using buffalo whey proteins as carrier agents of sensitive molecules raises an interesting approach allowing adding value and minimizing the pollution impact of this by-product. In this context, this work aims to explore the molecular interactions between buffalo whey proteins concentrate (BWPC) and folic acid (FA). For this purpose, fluorescence, UV and FTIR analysis were performed on aqueous or solid dispersions of a buffalo whey protein concentrate (5 μM) (BWPC), with variable concentrations (0-20 μM) of FA. Fluorescence and absorption data were fitted by Stern-Volmer, Beckett, Förster resonance energy transfer, and sphere-of-action models (R2 > 0.9). Derived results suggest that BWPC strongly bind to FA through non-covalent interactions and form ground-state complexes. Additionally, BWPC improves the photostability of FA against UV radiation, and chemical denaturation negatively affects the binding properties. Obtained results encourage further studies of BWPC as carrier agents, which could promote innovative applications for this under-utilized proteins source.
Collapse
Affiliation(s)
- Leandro Fabián Bustos
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña 3700, Chaco, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428, Buenos Aires, Argentina.
| | - María Alicia Judis
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña 3700, Chaco, Argentina.
| | - Franco Emanuel Vasile
- Universidad Nacional del Chaco Austral & CONICET - Instituto de investigaciones en procesos tecnológicos avanzados (INIPTA), Comandante Fernández 755, Presidencia Roque Sáenz Peña 3700, Chaco, Argentina.
| | - Oscar Edgardo Pérez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica & CONICET-Universidad de Buenos Aires, Laboratorio Interdisciplinario de Dinámica Celular y Nano-Herramientas, Intendente Güiraldes 2160, CP 1428, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Tirado-Kulieva VA, Hernández-Martínez E, Suomela JP. Non-destructive assessment of vitamin C in foods: a review of the main findings and limitations of vibrational spectroscopic techniques. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04023-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe constant increase in the demand for safe and high-quality food has generated the need to develop efficient methods to evaluate food composition, vitamin C being one of the main quality indicators. However, its heterogeneity and susceptibility to degradation makes the analysis of vitamin C difficult by conventional techniques, but as a result of technological advances, vibrational spectroscopy techniques have been developed that are more efficient, economical, fast, and non-destructive. This review focuses on main findings on the evaluation of vitamin C in foods by using vibrational spectroscopic techniques. First, the fundamentals of ultraviolet–visible, infrared and Raman spectroscopy are detailed. Also, chemometric methods, whose use is essential for a correct processing and evaluation of the spectral information, are described. The use and importance of vibrational spectroscopy in the evaluation of vitamin C through qualitative characterization and quantitative analysis is reported. Finally, some limitations of the techniques and potential solutions are described, as well as future trends related to the utilization of vibrational spectroscopic techniques.
Collapse
|
9
|
Agarwal N, Verma I, Siddiqui N, Javed S. Experimental spectroscopic and quantum computational analysis of pyridine-2,6-dicarboxalic acid with molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Energetic and structural effects of the Tanford transition on ligand recognition of bovine β-lactoglobulin. Arch Biochem Biophys 2021; 699:108750. [PMID: 33421379 DOI: 10.1016/j.abb.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/14/2023]
Abstract
Bovine β-lactoglobulin, an abundant protein in whey, is a promising nanocarrier for peroral administration of drug-like hydrophobic molecules, a process that involves transit through the different acidic conditions of the human digestive tract. Among the several pH-induced conformational rearrangements that this lipocalin undergoes, the Tanford transition is particularly relevant. This transition, which occurs with a midpoint around neutral pH, involves a conformational change of the E-F loop that regulates accessibility to the primary binding site. The effect of this transition on the ligand binding properties of this protein has scarcely been explored. In this study, we carried out an energetic and structural characterization of β-lactoglobulin molecular recognition at pH values above and below the zone in which the Tanford transition occurs. The combined analysis of crystallographic, calorimetric, and molecular dynamics data sheds new light on the interplay between self-association, ligand binding, and the Tanford pre- and post-transition conformational states, revealing novel aspects underlying the molecular recognition mechanism of this enigmatic lipocalin.
Collapse
|
11
|
Swain BC, Rout J, Tripathy U. Interaction of vitamin B12 with β-lactoglobulin: a computational study. J Biomol Struct Dyn 2020; 40:2146-2155. [PMID: 33074063 DOI: 10.1080/07391102.2020.1835731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The β-Lactoglobulin (βLG) is a major whey protein that has the potential to bind various ligands; hence it is used as a model protein in protein-ligand interaction studies. Vitamin B12 is an essential nutrient for the human body, which helps in the synthesis of DNA, proteins, and the production of red blood cells. Binding interaction of vitamin B12 with βLG will help to understand the potency of βLG as a transporter for vitamin B12. Our experimental findings already showed that βLG binds with vitamin B12 successfully (Swain et al., 2020). Nevertheless, to further support our experimental results firmly, here, we have employed computational tools such as molecular docking and molecular dynamics (MD) simulation. The molecular docking technique was used to elucidate the probable binding sites and binding affinity of vitamin B12 on βLG. The docked complex of vitamin B12 with βLG was subjected to MD simulation to investigate its stability and other interaction properties over a time frame. The study revealed that the compound is stable, and vitamin B12 imposes no change to the secondary structure of the βLG. The computational results agree reasonably well with our experimental study.
Collapse
Affiliation(s)
- Bikash Chandra Swain
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Janmejaya Rout
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
12
|
Takalloo Z, Masroor MJ, Mani-Varnosfaderani A, Maroufi B, H Sajedi R. Probing heat and oxidation induced conformational changes of molecular chaperone artemin by excitation-emission fluorescence spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:112013. [PMID: 32919176 DOI: 10.1016/j.jphotobiol.2020.112013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
Artemin is a potent molecular chaperone, which protects Artemia embryos undergoing encystment against extreme environmental stresses. In the present work, we have examined the structural changes of artemin from A. urmiana upon exposure to oxidant and heat, by using CD measurements as well as excitation-emission fluorescence spectroscopy as a powerful tool for monitoring the conformational transitions and molecular interactions in proteins. We have also provided here the first document on reporting the three dimensional fluorescence spectra of a protein using ANS. Totally, the fluorescence results indicated that the microenvironments of tyrosine and tryptophan residues and the hydrophobic pockets as well as the polypeptide backbone or secondary structure of the chaperone were influenced in responses to heat and H2O2 in different degrees. Moreover, the native state of artemin did not induce a considerable exposure of the internal non-polar groups to the solvent. Besides, the excitation-emission spectra of heated artemin by ANS revealed new emission peaks at 430-450 nm when it was excited at 330 nm, which suggests probable exposure of new binding sites for hydrophobic or electrostatic interactions of the protein with ANS. The protein also showed a greater conformational sensitivity to the temperature fluctuations compared to oxidation. Here, we presented some evidence in support of the relation between artemin and its stress dependent activation in vitro and in vivo. This study can expect that the EEM fluorescence spectroscopy could provide a promising tool to study conformational transitions of proteins.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Masroor
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Varlamova EG, Zaripov OG. Beta-lactoglobulin-nutrition allergen and nanotransporter of different nature ligands therapy with therapeutic action. Res Vet Sci 2020; 133:17-25. [PMID: 32919234 DOI: 10.1016/j.rvsc.2020.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
β-lactoglobulin is one of the nutrition allergens present in the milk of many mammals, with the exception of human. This protein belongs to the family of lipocalins, consisting of nine antiparallel β-strands (β-A to β-I) and one α-helix. This structure allows it to serve as a nanotransporter of various nature ligands in a pH dependent manner, which allows us to confidently consider it as a reliable carrier of drugs directly into the intestine, bypassing the destructive acidic environment of the stomach. Based on the latest data, this review describes the currently known methods of reducing the allergenicity of beta-lactoglobulin, as well as the mechanisms and methods of forming complexes of this protein with ligands, which emphasizes its importance and versatility and explains the growing interest in studying its properties in recent decades, and also opens up prospects for its practical application in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- E G Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya st. 3, 142290, Pushchino, Moscow Region, Russia.
| | - O G Zaripov
- Federal Science Center for Animal Husbandry named after Academy Member L.K. Ernst, Dubrovitsy village, house 60, 142132, Moscow region, Podolsky city district, Russia
| |
Collapse
|
14
|
Swain BC, Subadini S, Rout J, Sakshi, Mishra PP, Sahoo H, Tripathy U. Biophysical study on complex formation between β-Lactoglobulin and vitamin B12. Food Chem 2020; 312:126064. [DOI: 10.1016/j.foodchem.2019.126064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 01/27/2023]
|
15
|
Shahraki S, Heydari A, Delarami HS, Oveisi Keikha A, Azizi Z, Fathollahi Zonouz A. Preparation, characterization and comparison of biological potency in two new Zn(II) and Pd(II) complexes of butanedione monoxime derivatives. J Biomol Struct Dyn 2019; 38:997-1011. [PMID: 30938659 DOI: 10.1080/07391102.2019.1591305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel Schiff base ligand (2-iminothiophenol-2,3-butanedione monoxime, ITBM) and its complexes with Pd(II) and Zn(II) metal ions ([M(ITBM)2]Cl2) were synthesized and characterized in the present study. The formulated complexes were evaluated for in vitro antioxidant activity as radical scavengers against 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•). According to the results, antioxidant activity of Pd complex (IC50=36 mg L-1) was more effective than that of Zn(II) complex (IC50=72 mg L-1). Biophysical techniques along with computational modeling were employed to examine the binding of these complexes with human serum albumin (HSA) as the model protein. The trial findings revealed an interaction between Schiff base complexes and HSA with a modest binding affinity [Kb=6.31(±0.11)×104 M-1 for Zn(II) complex and 0.71(±0.05)×104 M-1 for Pd(II) complex at 310 K]. An intense fluorescence quenching of protein through a static quenching mechanism was occurred due to the binding of both complexes to HSA. Hydrogen bonds and van der Waals forces in both examined systems were the main stabilizing forces in the development of drug-protein complex. Based on far-UV-CD observations, the content of α-helical structure in the protein was reduced through induction by both complexes. Analysis of protein-ligand docking demonstrated binding of the two Schiff base complexes to residues placed in the IIA subdomain of HSA. In addition, Zn complex with HSA showed a stronger binding ability than that of Pd complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ali Heydari
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | | | - Zahra Azizi
- Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | | |
Collapse
|
16
|
Petrova J, Gocheva G, Ivanova N, Iliev S, Atanasova B, Madjarova G, Ivanova A. Molecular simulation of the structure of folate and antifolates at physiological conditions. J Mol Graph Model 2019; 87:172-184. [DOI: 10.1016/j.jmgm.2018.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023]
|
17
|
Shahraki S, Majd MH, Heydari A. Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Shahraki S, Shiri F, Heidari Majd M, Dahmardeh S. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. J Biomol Struct Dyn 2018; 37:2072-2085. [PMID: 29768984 DOI: 10.1080/07391102.2018.1476266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, a new lanthanum (III)-amino acid complex utilizing cysteine has been synthesized and characterized. The anticancer activities of the prepared La(III) complex against MCF-7 cell lines were studied. Results of MTT assay showed that at all three incubation times, the cytotoxic effect of prepared La(III) complex on MCF-7 breast cancer cell lines displays a time- and dose-dependent inhibitory effects. The interactions of the La(III) complex with two whey proteins (bovine serum albumin, BSA, and Bovine β-lactoglobulin, βLG) have been explored by using spectroscopic and molecular dicking methods. The obtained results indicated that La(III) complex strongly quenched the fluorescence of two carrier proteins in static quenching mode and also, BSA hah stronger binding affinity toward studied complex than βLG whit binding constant values of KBSA-La Complex ∼ 0.11 × 104 M-1 and KβLG-La Complex ∼ 0.63 × 103 M-1 at 300 K. The thermodynamic parameters revealed the contribution of hydrogen bond and Vander Waals interactions in both systems. The distances of the La(III) complex whit whey proteins were calculated using Förster energy transfer theory and proved existence of the energy transfer between two proteins and prepared La(III) complex with a high probability. FT-IR and UV-Vis absorption measurements indicated that the binding of the La(III) to BSA and βLG may induce conformational and micro-environmental changes of the proteins. The docking results indicate that the La(III) complex bind to residues located in the site II of BSA and second site of βLG. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somaye Shahraki
- a Department of Chemistry , University of Zabol , P.O. Box 98615-538 , Zabol , Iran
| | - Fereshteh Shiri
- a Department of Chemistry , University of Zabol , P.O. Box 98615-538 , Zabol , Iran
| | | | - Somaye Dahmardeh
- b Faculty of Pharmacy , Zabol University of Medical Sciences , Zabol , Iran
| |
Collapse
|