1
|
de Oliveira VA, Negreiros HA, de Sousa IGB, Farias Mendes LK, Alves Damaceno Do Lago JP, Alves de Sousa A, Alves Nobre T, Pereira IC, Carneiro da Silva FC, Lopes Magalhães J, de Castro E Sousa JM. Application of nanoformulations as a strategy to optimize chemotherapeutic treatment of glioblastoma: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:131-152. [PMID: 38480528 DOI: 10.1080/10937404.2024.2326679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The aim of this review was to explore the advances of nanoformulations as a strategy to optimize glioblastoma treatment, specifically focusing on targeting and controlling drug delivery systems to the tumor. This review followed the PRISMA recommendations. The studies were selected through a literature search conducted in the electronic databases PubMed Central, Science Direct, Scopus and Web of Science, in April 2023, using the equation descriptors: (nanocapsule OR nanoformulation) AND (glioblastoma). Forty-seven investigations included were published between 2011 and 2023 to assess the application of different nanoformulations to optimize delivery of chemotherapies including temozolomide, carmustine, vincristine or cisplatin previously employed in brain tumor therapy, as well as investigating another 10 drugs. Data demonstrated the possible application of different matrices employed as nanocarriers and utilization of functionalizing agents to improve internalization of chemotherapeutics. Functionalization was developed with the application of peptides, micronutrients/vitamins, antibodies and siRNAs. Finally, this review demonstrated the practical and clinical application of nanocarriers to deliver multiple drugs in glioblastoma models. These nanomodels might ideally be developed using functionalizing ligand agents that preferably act synergistically with the drug these agents carry. The findings showed promising results, making nanoformulations one of the best prospects for innovation and improvement of glioblastoma treatment.
Collapse
Affiliation(s)
- Victor Alves de Oliveira
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Helber Alves Negreiros
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Layza Karyne Farias Mendes
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Athanara Alves de Sousa
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Taline Alves Nobre
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | | | - Janildo Lopes Magalhães
- Supramolecular Self-Assembly Laboratory - LAS, Department of Chemistry, Nature Sciences Center, Federal University of Piaui, Teresina, Brazil
| | | |
Collapse
|
2
|
Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
3
|
Ullah S, Azad AK, Nawaz A, Shah KU, Iqbal M, Albadrani GM, Al-Joufi FA, Sayed AA, Abdel-Daim MM. 5-Fluorouracil-Loaded Folic-Acid-Fabricated Chitosan Nanoparticles for Site-Targeted Drug Delivery Cargo. Polymers (Basel) 2022; 14:polym14102010. [PMID: 35631891 PMCID: PMC9145180 DOI: 10.3390/polym14102010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles play a vital role in cancer treatment to deliver or direct the drug to the malignant cell, avoiding the attacking of normal cells. The aim of the study is to formulate folic-acid-modified chitosan nanoparticles for colon cancer. Chitosan was successfully conjugated with folic acid to produce a folic acid–chitosan conjugate. The folate-modified chitosan was loaded with 5-FU using the ionic gelation method. The prepared nanoparticles were characterized for size, zeta potential, surface morphology, drug contents, entrapment efficiency, loading efficiency, and in vitro release study. The cytotoxicity study of the formulated nanoparticles was also investigated. The conjugation of folic acid with chitosan was confirmed by FTIR and NMR spectroscopy. The obtained nanoparticles were monodispersed nanoparticles with a suitable average size and a positive surface charge. The size and zeta potential and PDI of the CS-5FU-NPs were 208 ± 15, 26 ± 2, and +20 ± 2, respectively, and those of the FA-CS-5FU-NPs were 235 ± 12 and +20 ± 2, respectively, which are in the acceptable ranges. The drug contents’ % yield and the %EE of folate-decorated NPs were 53 ± 1.8% and 59 ± 2%, respectively. The in vitro release of the FA-CS-5FU-NPs and CS-5FU-NPs was in the range of 10.08 ± 0.45 to 96.57 ± 0.09% and 6 ± 0.31 to 91.44 ± 0.21, respectively. The cytotoxicity of the nanoparticles was enhanced in the presence of folic acid. The presence of folic acid in nanoparticles shows much higher cytotoxicity as compared to simple chitosan nanoparticles. The folate-modified nanoparticles provide a potential way to enhance the targeting of tumor cells.
Collapse
Affiliation(s)
- Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia
- Correspondence: or (A.K.A.); (M.M.A.-D.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Kifayat Ullah Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Muhammad Iqbal
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (A.N.); (K.U.S.); (M.I.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (A.K.A.); (M.M.A.-D.)
| |
Collapse
|
4
|
Hosseini SM, Mazinani S, Abdouss M, Kalhor H, Kalantari K, Amiri IS, Ramezani Z. Designing chitosan nanoparticles embedded into graphene oxide as a drug delivery system. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-020-03506-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Mohebbi S, Shariatipour M, Shafie B, Amini MM. Encapsulation of tamoxifen citrate in functionalized mesoporous silica and investigation of its release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Afzali E, Eslaminejad T, Yazdi Rouholamini SE, Shahrokhi-Farjah M, Ansari M. Cytotoxicity Effects of Curcumin Loaded on Chitosan Alginate Nanospheres on the KMBC-10 Spheroids Cell Line. Int J Nanomedicine 2021; 16:579-589. [PMID: 33531802 PMCID: PMC7846832 DOI: 10.2147/ijn.s251056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Breast cancer is one of the most lethal types of cancer in women. Curcumin showed therapeutic potential against breast cancer, but applying that by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. Moreover, poor water solubility of curcumin causes accumulation of a high concentration of curcumin and so decrease its permeability to the cell. Many strategies are employed to reduce curcumin metabolism such as adjuvants and designing novel delivery systems. Therefore, in this study sodium alginate and chitosan were used to synthesize the hydrogels that are known as biocompatible, hydrophilic and low toxic drug delivery systems. Also, folic acid was used to link to chitosan in order to actively targetfolate receptors on the cells. Methods Chitosan-β-cyclodextrin-TPP-Folic acid/alginate nanoparticles were synthesized and then curcumin was loaded on them. Interaction between the constituents of the particles was characterized by FTIR spectroscopy. Morphological structures of samples were studied by FE-SEM. Release profile of curcumin was determined by dialysis membrane. The cytotoxic test was done on the Kerman male breast cancer (KMBC-10) cell line by using MTT assay. The viability of cells was detected by fluorescent staining. Gene expression was investigated by real-time PCR. Results The encapsulation of curcumin into nano-particles showed an almost spherical shape and an average particle size of 155 nm. In vitro cytotoxicity investigation was indicated as dose-respond reaction against cancer breast cells after 24 h incubation. On the other hand, in vitro cell uptake study revealed active targeting of CUR-NPs into spheroids. Besides, CXCR4 expression was detected about 30-fold less than curcumin alone. The CUR-NPs inhibited proliferation and increased apoptosis in spheroid human breast cancer cells. Conclusion Our results showed the potential of NPs as an effective candidate for curcumin delivery to the target tumor spheroids that confirmed the creatable role of folate receptors.
Collapse
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyede Elmira Yazdi Rouholamini
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariam Shahrokhi-Farjah
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Kolonko AK, Efing J, González-Espinosa Y, Bangel-Ruland N, van Driessche W, Goycoolea FM, Weber WM. Capsaicin-Loaded Chitosan Nanocapsules for wtCFTR-mRNA Delivery to a Cystic Fibrosis Cell Line. Biomedicines 2020; 8:E364. [PMID: 32962254 PMCID: PMC7554911 DOI: 10.3390/biomedicines8090364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF), a lethal hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene coding for an epithelial chloride channel, is characterized by an imbalanced homeostasis of ion and water transports in secretory epithelia. As the disease is single-gene based, transcript therapy using therapeutic mRNA is a promising concept of treatment in order to correct many aspects of the fatal pathology on a cellular level. Hence, we developed chitosan nanocapsules surface-loaded with wtCFTR-mRNA to restore CFTR function. Furthermore, we loaded the nanocapsules with capsaicin, aiming to enhance the overall efficiency of transcript therapy by reducing sodium hyperabsorption by the epithelial sodium channel (ENaC). Dynamic light scattering with non-invasive back scattering (DLS-NIBS) revealed nanocapsules with an average hydrodynamic diameter of ~200 nm and a Zeta potential of ~+60 mV. The results of DLS-NIBS measurements were confirmed by asymmetric flow field-flow fractionation (AF4) with multidetection, while transmission electron microscopy (TEM) images confirmed the spherical morphology and size range. After stability measurements showed that the nanocapsules were highly stable in cell culture transfection medium, and cytotoxicity was ruled out, transfection experiments were performed with the CF cell line CFBE41o-. Finally, transepithelial measurements with a new state-of-the-art Ussing chamber confirmed successfully restored CFTR function in transfected cells. This study demonstrates that CS nanocapsules as a natural and non-toxic delivery system for mRNA to target cells could effectively replace risky vectors for gene delivery. The nanocapsules are not only suitable as a transcript therapy for treatment of CF, but open aspiring possibilities for safe gene delivery in general.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | - Janes Efing
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | - Yadira González-Espinosa
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (Y.G.-E.); (F.M.G.)
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| | | | - Francisco M. Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (Y.G.-E.); (F.M.G.)
| | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (J.E.); (N.B.-R.); (W.-M.W.)
| |
Collapse
|
10
|
Mohammadzadeh R, Shahim P, Akbari A. Formulation of a pH-sensitive cancer cell-targeted gene delivery system based on folate-chitosan conjugated nanoparticles. Biotechnol Appl Biochem 2020; 68:114-121. [PMID: 32060964 DOI: 10.1002/bab.1900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/07/2022]
Abstract
In this study, we investigated the design and construct of a chitosan (CA)-based targeted gene delivery system and evaluated its function. To this end, CA-folic acid/pDNA (CA-FA/pDNA) nanoparticles were prepared in different formulations using the ion gelation method. All the synthesized nanoparticles were characterized using FTIR, TEM, SEM and DLS. Moreover, the effects of molecular weight (MW) of CA, DNA, and CA concentration were inspected on encapsulation efficiency (EE). The results showed that the EE of pDNA was directly proportional with MW of CA and CA concentration but was in an inverse proportion with DNA concentration. In addition, high MW of CA and low MW of CA nanoparticles showed lower and higher pDNA release in all pH ranges, respectively. It is concluded that the N/P ratio increase can cause controlled pDNA release.
Collapse
Affiliation(s)
- Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Parinaz Shahim
- Department of Cell and Molecular Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Sandhya J, Veeralakshmi S, Kalaiselvam S. Tripolyphosphate crosslinked Triticum aestivum (wheatgrass) functionalized antimicrobial chitosan: Ameliorating effect on physicochemical, mechanical, invitro cytocompatibility and cell migration properties. J Biomol Struct Dyn 2020; 39:1635-1644. [PMID: 32107986 DOI: 10.1080/07391102.2020.1736160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric films for various biomedical applications require to be biocompatible and non- toxic. Chemical route of modifications for functionalization of the films for improved properties lead to undesirable effects for biological applications. Hence a natural way to enhancing their properties is by functionalizing them using plant extracts. This report investigates the synthesis of bioactive phytochemical loaded polymer using Triticum aestivum (wheatgrass) extract incorporated in tripolyphosphate crosslinked chitosan. Physical and mechanical properties of the extract functionalized crosslinked chitosan were analyzed and this showed significant changes in thickness, tensile strength and % elongation of the blend. The extract functionalized chitosan was characterized using Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDAX) confirming the interaction between the functional moieties of the extract and polymer. Antimicrobial analysis showed improved activity against Escherichia coli and Staphylococus aureus and Candida albicans. Presence of the extract in crosslinked chitosan enhanced the cytocompatibility in 3T3 cells carried out by MTT assay and showed improved cell migration properties determined by scratch assay.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Sandhya
- Department of Applied Science and Technology, Anna University, Chennai, India
| | - S Veeralakshmi
- Department of Applied Science and Technology, Anna University, Chennai, India
| | - S Kalaiselvam
- Department of Applied Science and Technology, Anna University, Chennai, India
| |
Collapse
|
12
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
13
|
Nagati V, Nakkka S, Yeggoni DP, Subramanyam R. Forskolin-loaded human serum albumin nanoparticles and its biological importance. J Biomol Struct Dyn 2019; 38:1539-1550. [PMID: 31057091 DOI: 10.1080/07391102.2019.1614481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, forskolin-loaded human serum albumin nanoparticles (FR-HSANPs) were successfully prepared by incorporation and affinity-binding methods. FR-HSANPs were characterized by transmission electron microscope that most of them are circular in shape and size is around 340 nm. The drug loading was more than 88% and further sustained release profiles were observed as it is 77.5% in 24 h time. Additionally, the cytotoxicity results with HepG2 cells indicated that FR-HSANPs showed significantly higher cytotoxicity and lower cell viability as compared to free forskolin (FR). Furthermore, to understand the binding mechanism of human serum albumin (HSA) with forskolin resulted from fluorescence quenching as a static mechanism and the binding constant is 6.26 ± 0.1 × 104 M-1, indicating a strong binding affinity. Further, association and dissociation kinetics of forskolin-HSA was calculated from surface plasmon resonance spectroscopy and the binding constant found to be Kforskolin = 3.4 ± 0.24 × 104 M-1 and also fast dissociation was observed. Further, we used circular dichroism and molecular dynamics simulations to elucidate the possible structural changes including local conformational changes and rigidity of the residues of both HSA and HSA-forskolin complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Veerababu Nagati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sailaja Nakkka
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Cavalcanti da Silveira CO, Gonçalves ADS, Costa Franca TC, Silva Filho EA. Computational studies of mucin 2 and its interactions with thiolated chitosans: a new insight for mucus adhesion and drug retention. J Biomol Struct Dyn 2019; 38:1479-1487. [DOI: 10.1080/07391102.2019.1610499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Arlan da Silva Gonçalves
- Federal Institute of Education Science and Technology of Espirito Santo, Unit Vila Velha, Vila Velha, Espírito Santo, Brazil
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | | |
Collapse
|
15
|
Montero N, Pérez E, Benito M, Teijón C, Teijón JM, Olmo R, Blanco MD. Biocompatibility studies of intravenously administered ionic-crosslinked chitosan-BSA nanoparticles as vehicles for antitumour drugs. Int J Pharm 2018; 554:337-351. [PMID: 30439492 DOI: 10.1016/j.ijpharm.2018.11.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/21/2023]
Abstract
In this study, a new alternative of ionic crosslinked nanoparticles (NPs) based on chitosan (C) and bovine serum albumin (A; BSA) was evaluated as drug delivery system for antitumour compounds (doxorubicin hydrochloride as a model). The different responses to the pH of the medium were determined by the electrostatic interactions induced by each polymeric combination (C50/A50; C80/A20; C20/A80). NPs revealed a nanoscale size (167-392 nm) and a positive net charge (12-26 mV), modulated by doxorubicin (DOX) loading. Drug loading capacity was higher than 5.2 ± 1.8 μgDOX/mgNP (Encapsulation efficiency = 34%), and an initial burst release was followed by a sustained delivery. Cellular uptake assays confirmed the entry of NPs in three human tumor cells (MCF7, T47D and Hela), triggering antioxidant responses (superoxide dismutase, catalase, glutathione reductase and total glutathione content) in those cells. This was also consistent with the decreased in IC50 values observed after the incubation of these cells with C20/A80-DOX and C50/A50-DOX NPs (1.90-3.48 μg/mL) compared with free DOX (2.36-6.025 μg/mL). In vivo results suggested that the selected proportions of chitosan-BSA created nonhemolytic and biocompatible stable NPs at the selected dose of 20 mg/kg. Despite the different formulations, this study demonstrated that these NPs could serve as safe drug carriers in further in vivo investigations.
Collapse
Affiliation(s)
- Nuria Montero
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| | - Elena Pérez
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Departamento de Farmacia, Biotecnología, Nutrición, Óptica y Optometría, Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Spain.
| | - Marta Benito
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain; Fundación San Juan de Dios, Centro de CC de la Salud San Rafael, Universidad Antonio de Nebrija, Spain.
| | - César Teijón
- Universidad Complutense de Madrid, Facultad de Enfermería, Fisioterapia y Podología, Departamento de Enfermería, Spain.
| | - José María Teijón
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| | - Rosa Olmo
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| | - M Dolores Blanco
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Spain.
| |
Collapse
|