1
|
Quattrociocchi C, Mangia A, Aime S, Menchise V, Delli Castelli D. Molecular Resonance Imaging of the CAIX Expression in Mouse Mammary Adenocarcinoma Cells. Pharmaceuticals (Basel) 2023; 16:1301. [PMID: 37765110 PMCID: PMC10535658 DOI: 10.3390/ph16091301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The carbonic anhydrase isoform IX (hCAIX) is one of the main players in extracellular tumor pH regulation, and it is known to be overexpressed in breast cancer and other common tumors. hCA IX supports the growth and survival of tumor cells, and its expression is correlated with metastasis and resistance to therapies, making it an interesting biomarker for diagnosis and therapy. The aim of this work deals with the development of an MRI imaging probe able to target the extracellular non-catalytic proteoglycan-like (PG) domain of CAIX. For this purpose, a specific nanoprobe, LIP_PepC, was designed by conjugating a peptidic interactor of the PG domain on the surface of a liposome loaded with Gd-bearing contrast agents. A Mouse Mammary Adenocarcinoma Cell Line (TS/A) was chosen as an in vitro breast cancer model to test the developed probe. MRI results showed a high selectivity and sensitivity of the imaging probe toward hCAI-expressing TS/A cells. This approach appears highly promising for the in vivo translation of a diagnostic procedure based on the targeting of hCA IX enzyme expression.
Collapse
Affiliation(s)
- Claudia Quattrociocchi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (C.Q.); (A.M.)
| | - Alberto Mangia
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (C.Q.); (A.M.)
| | - Silvio Aime
- CNR (Consiglio Nazionale delle Ricerche), Institute of Biostructures and Bioimaging, Molecular Biotechnology Center, 10126 Turin, Italy; (S.A.); (V.M.)
| | - Valeria Menchise
- CNR (Consiglio Nazionale delle Ricerche), Institute of Biostructures and Bioimaging, Molecular Biotechnology Center, 10126 Turin, Italy; (S.A.); (V.M.)
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy; (C.Q.); (A.M.)
| |
Collapse
|
2
|
Plant‐Based Natural Bioactive Compounds 2,4‐Ditert‐Butylphenolas: A Potential Candidates Against SARS‐Cov‐2019. ENERGY NEXUS 2022; 6:100080. [PMID: 35578668 PMCID: PMC9095257 DOI: 10.1016/j.nexus.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
The novel coronavirus 2019 is spreading around the world and causing serious concern. However, there is limited information about novel coronavirus that hinders the design of effective drug. Bioactive compounds are rich source of chemo preventive ingredients. In our present research focuses on identifying and recognizing bioactive chemicals in Lantana camara, by evaluating their potential toward new coronaviruses and confirming the findings using molecular docking, ADMET, network analysis and dynamics investigations.. The spike protein receptor binding domain were docked with 25 identified compounds and 2,4-Ditertbutyl-phenol (-6.3kcal/mol) shows highest docking score, its interactions enhances the increase in binding and helps to identify the biological activity. The ADME/toxicity result shows that all the tested compounds can serve as inhibitors of the enzymes CYP1A2 and CYP2D6. In addition, Molecular dynamics simulations studies with reference inhibitors were carried out to test the stability. This study identifies the possible active molecules against the receptor binding domain of spike protein, which can be further exploited for the treatment of novel coronavirus 2019. The results of the toxicity risk for phytocompounds and their active derivatives showed a moderate to good drug score.
Collapse
|
3
|
Zhou W, Zhang B, Fan K, Yin X, Liu J, Gou S. An Original Aspirin-Containing Carbonic Anhydrase 9 Inhibitor Overcomes Hypoxia-Induced Drug Resistance to Enhance the Efficacy of Myocardial Protection. Cardiovasc Drugs Ther 2021; 36:605-618. [PMID: 33844134 DOI: 10.1007/s10557-021-07182-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Hypoxic microenvironment plays a vital role in myocardial ischemia injury, generally leading to the resistance of chemotherapeutic drugs. This induces an intriguing study on mechanism exploration and prodrug design to overcome the hypoxia-induced drug resistance. METHODS In this study, we hypothesized that the overexpression of carbonic anhydrase 9 (CAIX) in myocardial cells is closely related to the drug resistance. Herein, bioinformatics analysis, gene knockdown, and overexpression assay certificated the correlation between CAIX overexpression and hypoxia. An original aspirin-containing CAIX inhibitor AcAs has been developed. RESULTS Based on the downregulation of CAIX level, both in vitro and in vivo, AcAs can overcome the acquired resistance and more effectively attenuate myocardial ischemia and hypoxia injury than that of aspirin. CAIX inhibitor is believed to recover the extracellular pH value so as to ensure the stable effect of aspirin. CONCLUSION Results indicate great potential of CAIX inhibitor for further application in myocardial hypoxia injury therapy.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Keyu Fan
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinfeng Liu
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China. .,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Langella E, Buonanno M, De Simone G, Monti SM. Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain. Cell Mol Life Sci 2021; 78:2059-2067. [PMID: 33201250 PMCID: PMC11072538 DOI: 10.1007/s00018-020-03697-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/26/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022]
Abstract
hCA IX is a multi-domain protein belonging to the family of hCAs which are ubiquitous zinc enzymes that catalyze the reversible hydration of CO2 to HCO3- and H+. hCA IX is a tumor-associated enzyme with a limited distribution in normal tissues, but over-expressed in many tumors, and is a promising drug target. Although many studies concerning the CA IX catalytic domain were performed, little is known about the proteoglycan-like (PG-like) domain of hCA IX which has been poorly investigated so far. Here we attempt to fill this gap by providing an overview on the functional, structural and therapeutic studies of the PG-like domain of hCA IX which represents a unique feature within the CA family. The main studies and recent advances concerning PG role in modulating hCA IX catalytic activity as well as in tumor spreading and migration are here reported. Special attention has been paid to the newly discovered disordered features of the PG domain which open new perspectives about its molecular mechanisms of action under physiological and pathological conditions, since disorder is likely involved in mediating interactions with partner proteins. The emerged disordered features of PG domain will be explored for putative diagnostic and therapeutic applications involving CA IX targeting in tumors.
Collapse
Affiliation(s)
- Emma Langella
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
5
|
Muthukumaran S, Sulochana KN, Umashankar V. Structure based design of inhibitory peptides targeting ornithine decarboxylase dimeric interface and in vitro validation in human retinoblastoma Y79 cells. J Biomol Struct Dyn 2020; 39:5261-5275. [PMID: 32597331 DOI: 10.1080/07391102.2020.1785331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Polyamine synthesis in human cells is initiated by catalytic action of Ornithine decarboxylase (ODC) on Ornithine. Elevated levels of polyamines are manifested proliferating cancer cells and are found to promote tumour cell adhesion. Di-flouro methyl orninthine is a known inhibitor of ODC, however its usage is limited due its low affinity quick clearance and incompetent cellular uptake, thus posing a need for potential inhibitors. Currently, peptides are substituting drugs, as these are highly selective, specific and potent. Hence, in this study, the interacting interfaces of native homodimeric form of ODC and its heterodimer with Antizyme were probed to design inhibitory peptides targeting ODC. The designed peptides were validated for structural fitness by extensive molecular dynamics simulations and Circular dichroism studies. Finally, these peptides were validated in Y79 retinoblastoma cells for impact on ODC activity, cytotoxicity cell cycle and cell adhesion. On collective analysis, Peptide3 (Pep 3) and Peptide4 (Pep 4) were found to be potentially targeting ODC, as these peptides showed significant decrease in intracellular polyamine levels, cell adhesion and cell cycle perturbation in Y79 cells. Thus, Pep 3 and Pep 4 shall be favourably considered as therapeutic agents for targeting ODC mediated proliferation in retinoblastoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sivashanmugam Muthukumaran
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - K N Sulochana
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.,National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Govt. of India), Belagavi, India
| |
Collapse
|
6
|
Bhardwaj VK, Purohit R. Targeting the protein-protein interface pocket of Aurora-A-TPX2 complex: rational drug design and validation. J Biomol Struct Dyn 2020; 39:3882-3891. [DOI: 10.1080/07391102.2020.1772109] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Biotechnology Division, CSIR-IHBT, Palampur, India
- CSIR-IHBT Campus, Academy of Scientific & Innovative Research (AcSIR), Palampur, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Biotechnology Division, CSIR-IHBT, Palampur, India
- CSIR-IHBT Campus, Academy of Scientific & Innovative Research (AcSIR), Palampur, India
| |
Collapse
|
7
|
Ahmed MZ, Muteeb G, Khan S, Alqahtani AS, Somvanshi P, Alqahtani MS, Ameta KL, Haque S. Identifying novel inhibitor of quorum sensing transcriptional regulator (SdiA) of Klebsiella pneumoniae through modelling, docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:3594-3604. [PMID: 32401149 DOI: 10.1080/07391102.2020.1767209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, attempts have been made to identify novel inhibitor(s) of SdiA (a homolog of LuxR transcription regulator) of Klebseilla pneumoniae using various computational techniques. 4LFU was used as a template to model the structure of SdiA. ProCheck, Verify3D, Ramachandran plot scores and ProSA-Web confirmed the good quality of the model as the root mean square deviation (RMSD) between SdiA model, and 4LFU template was estimated to be 0.21 Å. The secondary structural contents of SdiA model were predicted using PDBsum. The only binding site of SdiA was identified (area = 523.083 Å2 and volume = 351.044 Å3) using CASTp. Molecular docking at three different levels [high throughput virtual screening, standard-precision (SP) and extra-precision (XP) dockings] with increasingly stringent conditions was performed using Glide on Selleck's express pick library (L3600). A total of 61 ligands were found to bind with high affinities to the active site of SdiA. Further, the effect of solvent on protein-ligand interaction was evaluated by performing molecular mechanics-general born surface area (Prime/MM-GBSA). On the basis of Prime/MM-GBSA score, molecular dynamics simulation (50 ns) was performed on the ligand (WAY-390139-A) showing lowest binding energy to confirm the stability of protein-ligand complex. Docking energy and the corresponding binding affinity of WAY-390139-A towards SdiA were estimated to be -13.005 kcal mol-1 and 3.46 × 109 M-1, respectively. Our results confirm that WAY-390139-A binds at the autoinducer binding site of SdiA with high affinity and stability and can be further exploited as potential drug against K. pneumoniae after experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Saudi Arabia
| | - Saif Khan
- Department of Basic Medical and Dental Science, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, India
| | - Mohammed S Alqahtani
- Departmental of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Keshav Lalit Ameta
- Department of Chemistry, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2020; 39:3449-3458. [PMID: 32397940 PMCID: PMC7256349 DOI: 10.1080/07391102.2020.1766572] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SARS-CoV-2 is the causative agent of COVID-19 pandemic that is causing a global
health emergency. The lack of targeted therapeutics and limited treatment options have
triggered the scientific community to develop new vaccines or small molecule therapeutics
against various targets of SARS-CoV-2. The main protease (Mpro) is a well characterized
and attractive drug target because of its crucial role in processing of the polyproteins
which are required for viral replication. In order to provide potential lead molecules
against the Mpro for clinical use, we docked a set of 65 bioactive molecules of Tea plant
followed by exploration of the vast conformational space of protein-ligand complexes by
long term molecular dynamics (MD) simulations (1.50 µs). Top three bioactive molecules
(Oolonghomobisflavan-A, Theasinensin-D, and Theaflavin-3-O-gallate) were selected by
comparing their docking scores with repurposed drugs (Atazanavir, Darunavir, and
Lopinavir) against SARS-CoV-2. Oolonghomobisflavan-A molecule showed a good number of
hydrogen bonds with Mpro and higher MM-PBSA binding energy when compared to all three
repurposed drug molecules. during the time of simulation. This study showed
Oolonghomobisflavan-A as a potential bioactive molecule to act as an inhibitor for the
Mpro of SARS-CoV-2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India.,Biotechnology division, CSIR-IHBT, Palampur, HP, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, India
| | - Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India.,Biotechnology division, CSIR-IHBT, Palampur, HP, India
| | - Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India.,Biotechnology division, CSIR-IHBT, Palampur, HP, India
| | | | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India.,Biotechnology division, CSIR-IHBT, Palampur, HP, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, India
| | - Sanjay Kumar
- Biotechnology division, CSIR-IHBT, Palampur, HP, India
| |
Collapse
|
9
|
Türkeş C, Demir Y, Beydemir Ş. Calcium channel blockers: molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. J Biomol Struct Dyn 2020; 39:1672-1680. [DOI: 10.1080/07391102.2020.1736631] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Cüneyt Türkeş
- Faculty of Pharmacy, Department of Biochemistry, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Şükrü Beydemir
- Faculty of Pharmacy, Department of Biochemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
10
|
John A, Vetrivel U, Sivashanmugam M, Natarajan SK. Microsecond Simulation of the Proteoglycan-like Region of Carbonic Anhydrase IX and Design of Chemical Inhibitors Targeting pH Homeostasis in Cancer Cells. ACS OMEGA 2020; 5:4270-4281. [PMID: 32149257 PMCID: PMC7057697 DOI: 10.1021/acsomega.9b04203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a membrane-bound enzyme associated with tumor hypoxia and found to be over expressed in various tumor conditions. Targeting CAIX catalytic activity is proven to be efficient modality in modulating pH homeostasis in cancer cells. Proteoglycan-like (PG) region is unique to CAIX and is proposed to serve as an antenna enhancing the export of protons in conjunction with facilitated efflux of lactate ions via monocarboxylate transporters. Moreover, the PG region is also reported to contribute to the assembly and maturation of focal adhesion links during cellular attachment and dispersion on solid supports. Thus, drug targeting of this region shall efficiently modulate pH homeostasis and cell adhesion in cancer cells. As the PG region is intrinsically disordered, the complete crystal structure is not elucidated. Hence, in this study, we intend to sample the conformational landscape of the PG region at microsecond scale simulation in order to sample the most probable conformations that shall be utilized for structure-based drug design. In addition, the sampled conformations were subjected to high-throughput virtual screening against NCI and Maybridge datasets to identify potential hits based on consensus scoring and validation by molecular dynamics simulation. Further, the identified hits were experimentally validated for efficacy by in vitro and direct enzymatic assays. The results reveal 5-(2-aminoethyl)-1,2,3-benzenetriol to be the most promising hit as it showed significant CAIX inhibition at all levels of in silico and experimental validation.
Collapse
Affiliation(s)
- Arun John
- Centre
for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision
and Ophthalmology, Vision Research Foundation,
Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
- School
of Chemical and Biotechnology, SASTRA Deemed
University, Thanjavur, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre
for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision
and Ophthalmology, Vision Research Foundation,
Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
- E-mail: . Phone: +91-44-28271616. Fax: +91-44-28254180
| | - Muthukumaran Sivashanmugam
- Centre
for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision
and Ophthalmology, Vision Research Foundation,
Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Sulochana Konerirajapuram Natarajan
- R.S.
Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan
Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| |
Collapse
|