1
|
Wang ZZ, Yao GT, Wang LZ, Zhu YJ, Chen JH. Increased Expression and Prognostic Significance of BYSL in Melanoma. J Immunother 2024; 47:279-302. [PMID: 38980088 DOI: 10.1097/cji.0000000000000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/19/2024] [Indexed: 07/10/2024]
Abstract
We evaluated the BYSL content and underlying mechanism in melanoma (SKCM) overall survival (OS). In this study, we used a comprehensive approach combining bioinformatics tools, including miRNA estimation, quantitative real-time polymerase chain reaction (qRT-PCR) of miRNAs, E3 ligase estimation, STRING analysis, TIMER analysis, examination of associated upstream modulators, protein-protein interaction (PPI) analysis, as well as retrospective and survival analyses, alongside clinical sample validation. These methods were used to investigate the content of BYSL, its methylation status, its relation to patient outcome, and its immunologic significance in tumors. Our findings revealed that BYSL expression is negatively regulated by BYSL methylation. Analysis of 468 cases of SKCM RNA sequencing samples demonstrated that enhanced BYSL expression was associated with higher tumor grade. We identified several miRNAs, namely hsa-miR-146b-3p, hsa-miR-342-3p, hsa-miR-511-5p, hsa-miR-3690, and hsa-miR-193a-5p, which showed a strong association with BYSL levels. Furthermore, we predicted the E3 ubiquitin ligase of BYSL and identified CBL, FBXW7, FZR1, KLHL3, and MARCH1 as potential modulators of BYSL. Through our investigation, we discovered that PNO1, RIOK2, TSR1, WDR3, and NOB1 proteins were strongly associated with BYSL expression. In addition, we found a close association between BYSL levels and certain immune cells, particularly dendritic cells (DCs). Notably, we observed a significant negative correlation between miR-146b-3p and BYSL mRNA expression in SKCM sera samples. Collectively, based on the previously shown evidences, BYSL can serve as a robust bioindicator of SKCM patient prognosis, and it potentially contributes to immune cell invasion in SKCM.
Collapse
Affiliation(s)
- Zhong-Zhi Wang
- Department of Dermatology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Guo-Tai Yao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang-Zhe Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuan-Jie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Jiang-Han Chen
- Department of Dermatology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Marques S, Kouba P, Legrand A, Sedlar J, Disson L, Planas-Iglesias J, Sanusi Z, Kunka A, Damborsky J, Pajdla T, Prokop Z, Mazurenko S, Sivic J, Bednar D. CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules. JACS AU 2024; 4:2228-2245. [PMID: 38938816 PMCID: PMC11200249 DOI: 10.1021/jacsau.4c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Computational study of the effect of drug candidates on intrinsically disordered biomolecules is challenging due to their vast and complex conformational space. Here, we developed a comparative Markov state analysis (CoVAMPnet) framework to quantify changes in the conformational distribution and dynamics of a disordered biomolecule in the presence and absence of small organic drug candidate molecules. First, molecular dynamics trajectories are generated using enhanced sampling, in the presence and absence of small molecule drug candidates, and ensembles of soft Markov state models (MSMs) are learned for each system using unsupervised machine learning. Second, these ensembles of learned MSMs are aligned across different systems based on a solution to an optimal transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3 therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in Alzheimer's disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42 more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
Collapse
Affiliation(s)
- Sérgio
M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Petr Kouba
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
- Faculty
of Electrical Engineering, Czech Technical
University in Prague, Technicka 2, Dejvice, Praha 6 166 27, Czech Republic
| | - Anthony Legrand
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Sedlar
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Lucas Disson
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Zainab Sanusi
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Antonin Kunka
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Tomas Pajdla
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Josef Sivic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| |
Collapse
|
3
|
Kaur R, Narang SS, Singh P, Goyal B. Structural and molecular insights into tacrine-benzofuran hybrid induced inhibition of amyloid-β peptide aggregation and BACE1 activity. J Biomol Struct Dyn 2023; 41:13211-13227. [PMID: 37013977 DOI: 10.1080/07391102.2023.2191722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023]
Abstract
Amyloid-β (Aβ) aggregation and β-amyloid precursor protein cleaving enzyme 1 (BACE1) are the potential therapeutic drug targets for Alzheimer's disease (AD). A recent study highlighted that tacrine-benzofuran hybrid C1 displayed anti-aggregation activity against Aβ42 peptide and inhibit BACE1 activity. However, the inhibition mechanism of C1 against Aβ42 aggregation and BACE1 activity remains unclear. Thus, molecular dynamics (MD) simulations of Aβ42 monomer and BACE1 with and without C1 were performed to inspect the inhibitory mechanism of C1 against Aβ42 aggregation and BACE1 activity. In addition, a ligand-based virtual screening followed by MD simulations was employed to explore potent new small-molecule dual inhibitors of Aβ42 aggregation and BACE1 activity. MD simulations highlighted that C1 promotes the non aggregating helical conformation in Aβ42 and destabilizes D23-K28 salt bridge that plays a vital role in the self-aggregation of Aβ42. C1 displays a favourable binding free energy (-50.7 ± 7.3 kcal/mol) with Aβ42 monomer and preferentially binds to the central hydrophobic core (CHC) residues. MD simulations highlighted that C1 strongly interacted with the BACE1 active site (Asp32 and Asp228) and active pockets. The scrutiny of interatomic distances among key residues of BACE1 highlighted the close flap (non-active) position in BACE1 on the incorporation of C1. The MD simulations explain the observed high inhibitory activity of C1 against Aβ aggregation and BACE1 in the in vitro studies. The ligand-based virtual screening followed by MD simulations identified CHEMBL2019027 (C2) as a promising dual inhibitor of Aβ42 aggregation and BACE1 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Pritpal Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
4
|
Pereira GRC, Abrahim-Vieira BDA, de Mesquita JF. In Silico Analyses of a Promising Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis Targeting Superoxide Dismutase I Protein. Pharmaceutics 2023; 15:pharmaceutics15041095. [PMID: 37111580 PMCID: PMC10143751 DOI: 10.3390/pharmaceutics15041095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.
Collapse
|
5
|
Yang Z, Yao Y, Zhou Y, Li X, Tang Y, Wei G. EGCG attenuates α-synuclein protofibril-membrane interactions and disrupts the protofibril. Int J Biol Macromol 2023; 230:123194. [PMID: 36623616 DOI: 10.1016/j.ijbiomac.2023.123194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The fibrillary aggregates of α-synuclein (α-syn) are closely associated with the etiology of Parkinson's disease (PD). Mounting evidence shows that the interaction of α-syn with biological membranes is a culprit for its aggregation and cytotoxicity. While some small molecules can effectively inhibit α-syn fibrillization in solution, their potential roles in the presence of membrane are rarely studied. Among them, green tea extract epigallocatechin gallate (EGCG) is currently under active investigation. Herein, we investigated the effects of EGCG on α-syn protofibril (an intermediate of α-syn fibril formation) in the presence of a model membrane and on the interactions between α-syn protofibril and the membrane, as well as the underlying mechanisms, by performing microsecond all-atom molecular dynamics simulations. The results show that EGCG has destabilization effects on α-syn protofibril, albeit to a lesser extent than that in solution. Intriguingly, we find that EGCG forms overwhelming H-bonding and cation-π interactions with membrane and thus attenuates protofibril-membrane interactions. Moreover, the decreased protofibril-membrane interactions impede the membrane damage by α-syn protofibril and enable the membrane integrity. These findings provide atomistic understanding towards the attenuation of α-syn protofibril-induced cytotoxicity by EGCG in cellular environment, which is helpful for the development of EGCG-based therapeutic strategies against PD.
Collapse
Affiliation(s)
- Zhongyuan Yang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yiming Tang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
6
|
Yao Y, Tang Y, Zhou Y, Yang Z, Wei G. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs. Int J Biol Macromol 2022; 220:316-325. [PMID: 35981677 DOI: 10.1016/j.ijbiomac.2022.08.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases with no cure yet and its major hallmark is α-synuclein fibrillary aggregates. The crucial role of α-synuclein aggregation in PD makes it an attractive target for potential disease-modifying therapies. Disaggregation of α-synuclein fibrils is considered as one of the promising therapeutic strategies to treat PD. The wild type (WT) and mutant α-synuclein fibrils exhibit different polymorphs and provide therapeutic targets for PD. Recent experiments reported that a flavonoid baicalein can disrupt WT α-synuclein fibrils. However, the underlying disruptive mechanism remains largely elusive, and whether BAC is capable of disrupting mutant α-synuclein fibrils is also unknown. Herein, we performed microsecond molecular dynamics simulations on cryo-EM-determined WT and two familial PD-associated mutant (E46K and H50Q) α-synuclein fibrils with and without baicalein. We find that baicalein destructs WT fibril by disrupting E46-K80 salt-bridge and β-sheets, and by remodeling the inter-protofilament interface. And baicalein can also damage E46K and H50Q mutant fibrils, but to different extents and via different mechanisms. The E46K fibril disruption is initiated from E61-K80 salt-bridge and N-terminal β-sheet, while the H50Q fibril disruption starts from the inter-protofilament interface and N-terminal β-sheet. These results reveal that disruptive effects and modes of baicalein on α-synuclein fibrils are polymorphism-dependent. This study suggests that baicalein may be a potential drug candidate to disrupt both WT and E46K/H50Q mutant α-synuclein fibrils and alleviate the pathological process of PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
7
|
Mustafa G, Zia-ur-Rehman M, Sumrra SH, Ashfaq M, Zafar W, Ashfaq M. A critical review on recent trends on pharmacological applications of pyrazolone endowed derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Pereira GRC, Gonçalves LM, Abrahim-Vieira BDA, De Mesquita JF. In silico analyses of acetylcholinesterase (AChE) and its genetic variants in interaction with the anti-Alzheimer drug Rivastigmine. J Cell Biochem 2022; 123:1259-1277. [PMID: 35644025 DOI: 10.1002/jcb.30277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/14/2022] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.
Collapse
Affiliation(s)
| | - Lucas Machado Gonçalves
- Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil
| | | | - Joelma Freire De Mesquita
- Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Xu S, Sun Y, Dong X. Design of Gallic Acid-Glutamine Conjugate and Chemical Implications for Its Potency Against Alzheimer's Amyloid-β Fibrillogenesis. Bioconjug Chem 2022; 33:677-690. [PMID: 35380783 DOI: 10.1021/acs.bioconjchem.2c00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer's amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefore, we designed five GA-derivatives to investigate the significance of carboxyl groups in modulating Aβ fibrillogenesis, including carboxyl-amidated GA (GA-NH2), GA-glutamic acid conjugate (GA-E), and GA-E derivatives with amidated either of the two carboxyl groups (GA-Q and GA-E-NH2) or with two amidated-carboxyl groups (GA-Q-NH2). Intriguingly, only GA-Q shows significantly stronger potency than GA and extends the life span of the AD transgenic nematode by over 30%. Thermodynamic studies reveal that GA-Q has a strong binding affinity for Aβ42 with two binding sites, one stronger (site 1, Ka1 = 3.1 × 106 M-1) and the other weaker (site 2, Ka2 = 0.8 × 106 M-1). In site 1, hydrogen bonding, electrostatic interactions, and hydrophobic interactions all have contributions, while in site 2, only hydrogen bonding and electrostatic interactions work. The two sites are confirmed by molecular simulations, and the computations specified the key residues. GA-Q has strong binding to Asp23, Gly33, Gly38, Ala30, Ile31, and Leu34 via hydrogen bonding and electrostatic interactions, while it interacts with Phe19, Ala21 Gly25, and Asn27 via hydrophobic interactions. Consequently, GA-Q destroys Asp23-Lys28 salt bridges and restricts β-sheet/bridge structures. The thermodynamic and molecular insight into the GA-Q functions on inhibiting Aβ fibrillogenesis would pave a new way to the design of potent molecules against Alzheimer's amyloid.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Aguilar-Pineda JA, Paco-Coralla SG, Febres-Molina C, Gamero-Begazo PL, Shrivastava P, Vera-López KJ, Davila-Del-Carpio G, López-C P, Gómez B, Lino Cardenas CL. In Silico Analysis of the Antagonist Effect of Enoxaparin on the ApoE4–Amyloid-Beta (Aβ) Complex at Different pH Conditions. Biomolecules 2022; 12:biom12040499. [PMID: 35454088 PMCID: PMC9027285 DOI: 10.3390/biom12040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Apolipoprotein E4 (ApoE4) is thought to increase the risk of developing Alzheimer’s disease. Several studies have shown that ApoE4-Amyloid β (Aβ) interactions can increment amyloid depositions in the brain and that this can be augmented at low pH values. On the other hand, experimental studies in transgenic mouse models have shown that treatment with enoxaparin significantly reduces cortical Aβ levels, as well as decreases the number of activated astrocytes around Aβ plaques. However, the interactions between enoxaparin and the ApoE4-Aβ proteins have been poorly explored. In this work, we combine molecular dynamics simulations, molecular docking, and binding free energy calculations to elucidate the molecular properties of the ApoE4-Aβ interactions and the competitive binding affinity of the enoxaparin on the ApoE4 binding sites. In addition, we investigated the effect of the environmental pH levels on those interactions. Our results showed that under different pH conditions, the closed form of the ApoE4 protein, in which the C-terminal domain folds into the protein, remains stabilized by a network of hydrogen bonds. This closed conformation allowed the generation of six different ApoE4-Aβ interaction sites, which were energetically favorable. Systems at pH5 and 6 showed the highest energetic affinity. The enoxaparin molecule was found to have a strong energetic affinity for ApoE4-interacting sites and thus can neutralize or disrupt ApoE4-Aβ complex formation.
Collapse
Affiliation(s)
- Jorge Alberto Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (P.L.G.-B.); (B.G.)
- Correspondence: (J.A.A.-P.); (C.L.L.C.)
| | - Silvana G. Paco-Coralla
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
| | - Camilo Febres-Molina
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370134, Chile;
| | - Pamela L. Gamero-Begazo
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (P.L.G.-B.); (B.G.)
| | - Pallavi Shrivastava
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
| | - Karin J. Vera-López
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru
| | - Gonzalo Davila-Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (S.G.P.-C.); (P.S.); (K.J.V.-L.); (G.D.-D.-C.)
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Patricia López-C
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru;
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (P.L.G.-B.); (B.G.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n—Umacollo, Arequipa 04000, Peru
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence: (J.A.A.-P.); (C.L.L.C.)
| |
Collapse
|
11
|
Combined Modeling Study of the Binding Characteristics of Natural Compounds, Derived from Psoralea Fruits, to β-Amyloid Peptide Monomer. Int J Mol Sci 2022; 23:ijms23073546. [PMID: 35408917 PMCID: PMC8998326 DOI: 10.3390/ijms23073546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
A dysfunctional protein aggregation in the nervous system can lead to several neurodegenerative disorders that result in intracellular inclusions or extracellular aggregates. An early critical event within the pathogenesis of Alzheimer’s disease is the accumulation of amyloid beta peptide within the brain. Natural compounds isolated from Psoralea Fructus (PF) have significant anti-Alzheimer effects as strong inhibitors of Aβ42 aggregation. Computer simulations provide a powerful means of linking experimental findings to nanoscale molecular events. As part of this research four prenylated compounds, the active ingredients of Psoralea Fructus (PF), were studied as Aβ42 accumulation inhibitors using molecular simulations modeling. In order to resolve the binding modes of the ligands and identify the main interactions of Aβ42 residues, we performed a 100 ns molecular dynamics simulation and binding free energy calculations starting from the model of the compounds obtained from the docking study. This study was able to pinpoint the key amino acid residues in the Aβ42 active site and provide useful information that could benefit the development of new Aβ42 accumulation inhibitors.
Collapse
|
12
|
de Oliveira OV, Gonçalves ADS, Almeida NECD. Insights into β-amyloid transition prevention by cucurbit[7]uril from molecular modeling. J Biomol Struct Dyn 2022; 40:9602-9612. [PMID: 34042019 DOI: 10.1080/07391102.2021.1932600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, comparable molecular dynamic (MD) simulations of 1.2 microseconds were performed to clarify the prevention of the β-amyloid peptide (Aβ1-42) aggregation by cucurbit[7]uril (CB[7]). The accumulation of this peptide in the brain is one of the most harmful in Alzheimer's disease. The inhibition mechanism of Aβ1-42 aggregation by different molecules is attributed to preventing of Aβ1-42 conformational transition from α-helix to the β-sheet structure. However, our structural analysis shows that the pure water and aqueous solution of the CB[7] denature the native Aβ1-42 α-helix structure forming different compactness and unfolded conformations, not in β-sheet form. On the other hand, in the three CB[7]@Aβ1-42 complexes, it was observed the encapsulation of N-terminal (Asp1), Lys16, and Val36 by CB[7] along the MD trajectory, and not with aromatic residues as suggested by the literature. Only in one CB[7]@Aβ1-42 complex was observed stable Asp23-Lys28 salt bridge with an average distance of 0.36 nm. All CB[7]@Aβ1-42 complexes are very stable with binding free energy lowest than ∼-50 kcal/mol between the CB[7] and Aβ1-42 monomer from MM/PBSA calculation. Therefore, herein we show that the mechanism of the prevention of elongation protofibril by CB[7] is due to the disruption of the Asp23-Lys28 salt bridge and steric effects of CB[7]@Aβ1-42 complex with the fibril lattice, and not due to the transition from α-helix to β-sheet following the dock-lock mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
|
13
|
Jiang L, Sun Q, Li L, Lu F, Liu F. Molecular Insights into the Inhibitory Effect of GV971 Components Derived from Marine Acidic Oligosaccharides against the Conformational Transition of Aβ42 Monomers. ACS Chem Neurosci 2021; 12:3772-3784. [PMID: 34565139 DOI: 10.1021/acschemneuro.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
GV971 derived from marine acidic oligosaccharides has been used to cure Alzheimer's disease (AD). However, the molecular mechanism of its inhibition of the conformational transition of amyloid β-proteins (Aβ) is still unclear. Herein, molecular dynamics simulations were used to explore the molecular mechanism of the main GV971 components including DiM, TetraM, HexaM, and OctaM to inhibit the conformational conversion of the Aβ42 monomer. It is found that the GV971 components inhibit the conformational transition from α-helix to β-sheet and the hydrophobic collapse of the Aβ42 monomer. In addition, the binding energy analysis implies that both electrostatic and van der Waals interactions are beneficial to the binding of GV971 components to the Aβ42 monomer. Among them, electrostatic interactions occupy the dominant position. Moreover, the GV971 components mainly interact directly with the charged residues D1, R5, K16, and K28 by forming salt bridges and hydrogen bonds, which specifically bind to the N-terminal region of Aβ42.
Collapse
Affiliation(s)
- Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
14
|
Potential Anti-Alzheimer Agents from Guanidinyl Tryptophan Derivatives with Activities of Membrane Adhesion and Conformational Transition Inhibitions. Molecules 2021; 26:molecules26164863. [PMID: 34443456 PMCID: PMC8398955 DOI: 10.3390/molecules26164863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Guanidinyl tryptophan derivatives TGN1, TGN2, TGN3, and TGN4 were synthesized, and these compounds were shown to possess in vitro inhibitory activity for amyloid aggregation in a previous study. Nevertheless, the influence of the TGN series of compounds on the binding and permeation behaviors of an Aβ monomer to the cell membranes was not elucidated. In this study, we investigated the effect of compounds in the TGN series on the behavior of an Aβ monomer regarding its toxicity toward the bilayer lipid membrane using molecular dynamics (MD) simulation. MD simulations suggest that TGN4 is a potential agent that can interfere with the movement of the Aβ monomer into the membrane. The MM-GBSA result demonstrated that TGN4 exhibits the highest affinity to the Aβ1–42 monomer but has the lowest affinity to the bilayer. Moreover, TGN4 also contributes to a decrease in the binding affinity between the Aβ1–42 monomer and the POPC membrane. Regarding the results of the binding mode and conformational analyses, a high number of amino-acid residues were shown to provide the binding interactions between TGN4 and the Aβ1–42 monomer. TGN4 also reduces the conformational transition of the Aβ1–42 monomer by means of interacting with the monomer. The present study presents molecular-level insights into how the TGN series of compounds affect the membrane adsorption and the conformational transition of the Aβ1–42 monomer, which could be valuable for the further development of new anti-Alzheimer agents.
Collapse
|
15
|
Castro-Silva ES, Bello M, Rosales-Hernández MC, Correa-Basurto J, Hernández-Rodríguez M, Villalobos-Acosta D, Méndez-Méndez JV, Estrada-Pérez A, Murillo-Álvarez J, Muñoz-Ochoa M. Fucosterol from Sargassum horridum as an amyloid-beta (Aβ 1-42) aggregation inhibitor: in vitro and in silico studies. J Biomol Struct Dyn 2021; 39:1271-1283. [PMID: 32159448 DOI: 10.1080/07391102.2020.1729863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The number of patients diagnosed with Alzheimer's disease (AD) increases each year, and there are currently few treatment strategies to decrease the symptoms of AD; furthermore, these strategies are not sufficient to reduce memory loss in AD patients. In this work, in vitro and in silico studies were performed to evaluate the effects of fucosterol, which was extracted from an algal source and characterized by liquid chromatography-mass spectra (LC-MS), as an inhibitor of Aβ1-42 aggregation. Experimental studies, including protein gel electrophoresis, atomic force microscopy and fluorescence studies with thioflavin T (ThT), highlighted that fucosterol can decrease oligomer formation more than galantamine, which was used as a positive control. Docking and molecular dynamics simulations coupled with an MMGBSA approach showed that fucosterol is capable of recognizing the hydrophobic regions of monomeric Aβ1-42, suggesting that fucosterol could affect amyloid-beta (Aβ1-42) aggregation by preventing the formation of oligomers, preventing the development of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elena Sthephanie Castro-Silva
- Laboratorio de Química de Macroalgas, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico, La Paz, B.C.S. México
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Maricarmen Hernández-Rodríguez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Daniel Villalobos-Acosta
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan Vicente Méndez-Méndez
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Ciudad de México, Mexico
| | - Alan Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Jesus Murillo-Álvarez
- Laboratorio de Química de Macroalgas, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico, La Paz, B.C.S. México
| | - Mauricio Muñoz-Ochoa
- Laboratorio de Química de Macroalgas, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico, La Paz, B.C.S. México
| |
Collapse
|
16
|
Liu F, Wang W, Xuan Z, Jiang L, Chen B, Dong Q, Zhao F, Cui W, Li L, Lu F. Fast green FCF inhibits Aβ fibrillogenesis, disintegrates mature fibrils, reduces the cytotoxicity, and attenuates Aβ-induced cognitive impairment in mice. Int J Biol Macromol 2020; 170:33-41. [PMID: 33352157 DOI: 10.1016/j.ijbiomac.2020.12.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Fast green FCF (FGF) is often used in foods, pharmaceuticals, and cosmetics. However, little is known about the interactions of FGF with amyloid-β protein (Aβ) associated with Alzheimer's disease. In this study, the inhibitory effects of FGF on Aβ fibrillogenesis, the disruption of preformed Aβ fibrils, the reduction of Aβ-induced cytotoxicity, and the attenuation of Aβ-induced learning and memory impairments in mice were investigated. FGF significantly inhibited Aβ fibrillogenesis and disintegrated the mature fibrils as evidenced by thioflavin T fluorescence and atomic force microscopy studies. Co-incubation of Aβ with FGF greatly reduced Aβ-induced cytotoxicity in vitro. Moreover, FGF showed a protective effect against cognitive impairment in Aβ-treated mice. Molecular dynamics simulations further showed that FGF could synergistically interact with the Aβ17-42 pentamer via electrostatic interactions, hydrogen bonds and π-π interactions, which reduced the β-sheet content, and disordered random coils and bend structures of the Aβ17-42 pentamer. This study offers a comprehensive understanding of the inhibitory effects of FGF against Aβ neurotoxicity, which is critical for the search of effective food additives that can combat amyloid-associated disease.
Collapse
Affiliation(s)
- Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhenquan Xuan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Beibei Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qinchen Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Li Li
- College of Marine and Environmental Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
18
|
Zhang H, Sang J, Li L, Jiang L, Lu F, He S, Cui W, Zhang X, Liu F. Molecular basis for the inhibitory effects of 5-hydroxycyclopenicillone on the conformational transition of Aβ 40 monomer. J Biomol Struct Dyn 2020; 39:6440-6451. [PMID: 32723218 DOI: 10.1080/07391102.2020.1799863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have indicated that 5-hydroxycyclopenicillone (HCP), an active compound derived from marine sponge, could inhibit oligomerization of amyloid β-protein (Aβ). However, the molecular basis for the interaction between HCP and Aβ remains unclear. Herein, all-atom molecular dynamics (MD) simulations were used to explore the conformational conversion of an Aβ40 monomer at different concentrations (0-40 mM) of HCP at the atomic level. It is confirmed that the conformational transition of the Aβ40 monomer is prevented by HCP in a concentration-dependent manner in silico. In 40 mM HCP solution, the initial α-helix-rich conformation of Aβ40 monomer is kept under the action of HCP. The intra-peptide hydrophobic collapse and D23-K28 salt bridge are prevented by HCP. Moreover, it is indicated that the non-polar binding energy dominates the binding between HCP and Aβ40 monomer as evaluated by molecular mechanics Poisson-Boltzmann surface area method. And, the residues of F4, Y10, V12, L17 and L34 in Aβ40 might contribute to the binding energy in HCP-Aβ40 complex. All these results elucidate the molecular mechanism underlying the inhibitory effects of HCP against the conformational transformation of Aβ40, providing a support that HCP may be developed as a potential anti-Aβ compound for the treatment of Aβ-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huitu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoqing Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
19
|
Muscat S, Pallante L, Stojceski F, Danani A, Grasso G, Deriu MA. The Impact of Natural Compounds on S-Shaped Aβ42 Fibril: From Molecular Docking to Biophysical Characterization. Int J Mol Sci 2020; 21:ijms21062017. [PMID: 32188076 PMCID: PMC7139307 DOI: 10.3390/ijms21062017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
The pursuit for effective strategies inhibiting the amyloidogenic process in neurodegenerative disorders, such as Alzheimer’s disease (AD), remains one of the main unsolved issues, and only a few drugs have demonstrated to delay the degeneration of the cognitive system. Moreover, most therapies induce severe side effects and are not effective at all stages of the illness. The need to find novel and reliable drugs appears therefore of primary importance. In this context, natural compounds have shown interesting beneficial effects on the onset and progression of neurodegenerative diseases, exhibiting a great inhibitory activity on the formation of amyloid aggregates and proving to be effective in many preclinical and clinical studies. However, their inhibitory mechanism is still unclear. In this work, ensemble docking and molecular dynamics simulations on S-shaped Aβ42 fibrils have been carried out to evaluate the influence of several natural compounds on amyloid conformational behaviour. A deep understanding of the interaction mechanisms between natural compounds and Aβ aggregates may play a key role to pave the way for design, discovery and optimization strategies toward an efficient destabilization of toxic amyloid assemblies.
Collapse
Affiliation(s)
- Stefano Muscat
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, IT-10128 Torino, Italy
| | - Filip Stojceski
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), University of Applied Science and Art of Southern Switzerland (SUPSI), CH-6928 Manno, Switzerland
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, IT-10128 Torino, Italy
- Correspondence:
| |
Collapse
|
20
|
Islam Z, Ali MH, Popelka A, Mall R, Ullah E, Ponraj J, Kolatkar PR. Probing the fibrillation of lysozyme by nanoscale-infrared spectroscopy. J Biomol Struct Dyn 2020; 39:1481-1490. [PMID: 32131712 DOI: 10.1080/07391102.2020.1734091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid fibrillation is the root cause of several neuro as well as non-neurological disorders. Understanding the molecular basis of amyloid aggregate formation is crucial for deciphering various neurodegenerative diseases. In our study, we have examined the lysozyme fibrillation process using nano-infrared spectroscopy (nanoIR). NanoIR enabled us to investigate both structural and chemical characteristics of lysozyme fibrillar species concurrently. The spectroscopic results indicate that lysozyme transformed into a fibrillar structure having mainly parallel β-sheets, with almost no antiparallel β-sheets. Features such as protein stiffness have a good correlation with obtained secondary structural information showing the state of the protein within the fibrillation state. The structural and chemical details were compared with transmission electron microscopy (TEM) and circular dichroism (CD). We have utilized nanoIR and measured infrared spectra to characterize lysozyme amyloid fibril structures in terms of morphology, molecular structure, secondary structure content, stability, and size of the cross-β core. We have shown that the use of nanoIR can complement other biophysical studies to analyze the aggregation process and is particularly useful for studying proteins involved in aggregation to help in designing molecules against amyloid aggregation. Specifically, the nanoIR spectra afford higher resolution information and a characteristic fingerprint for determining states of aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zeyaul Islam
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohamed H Ali
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Anton Popelka
- Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Janarthanan Ponraj
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Prasanna R Kolatkar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
21
|
Minh Hung H, Nguyen MT, Tran PT, Truong VK, Chapman J, Quynh Anh LH, Derreumaux P, Vu VV, Ngo ST. Impact of the Astaxanthin, Betanin, and EGCG Compounds on Small Oligomers of Amyloid Aβ 40 Peptide. J Chem Inf Model 2020; 60:1399-1408. [PMID: 32105466 DOI: 10.1021/acs.jcim.9b01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is experimental evidence that the astaxanthin, betanin, and epigallocatechin-3-gallate (EGCG) compounds slow down the aggregation kinetics and the toxicity of the amyloid-β (Aβ) peptide. How these inhibitors affect the self-assembly at the atomic level remains elusive. To address this issue, we have performed for each ligand atomistic replica exchange molecular dynamic (REMD) simulations in an explicit solvent of the Aβ11-40 trimer from the U-shape conformation and MD simulations starting from Aβ1-40 dimer and tetramer structures characterized by different intra- and interpeptide conformations. We find that the three ligands have similar binding free energies on small Aβ40 oligomers but very distinct transient binding sites that will affect the aggregation of larger assemblies and fibril elongation of the Aβ40 peptide.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| | - Vi Khanh Truong
- School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - James Chapman
- School of Science, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| | - Le Huu Quynh Anh
- Department of Climate Change and Renewable Energy, Ho Chi Minh City University of Natural Resources and Environment, Ho Chi Minh City 700000, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
22
|
Liang C, Savinov SN, Fejzo J, Eyles SJ, Chen J. Modulation of Amyloid-β42 Conformation by Small Molecules Through Nonspecific Binding. J Chem Theory Comput 2019; 15:5169-5174. [PMID: 31476124 PMCID: PMC6783347 DOI: 10.1021/acs.jctc.9b00599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aggregation of amyloid-β (Aβ) peptides is a crucial step in the progression of Alzheimer's disease (AD). Identifying aggregation inhibitors against AD has been a great challenge. We report an atomistic simulation study of the inhibition mechanism of two small molecules, homotaurine and scyllo-inositol, which are AD drug candidates currently under investigation. We show that both small molecules promote a conformational change of the Aβ42 monomer toward a more collapsed phase through a nonspecific binding mechanism. This finding provides atomistic-level insights into designing potential drug candidates for future AD treatments.
Collapse
Affiliation(s)
- Chungwen Liang
- Computational Modeling Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Sergey N Savinov
- Computational Modeling Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Department of Biochemistry and Molecular Biology , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Jasna Fejzo
- Biomolecular NMR Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Stephen J Eyles
- Mass Spectrometry Core Facility, Institute for Applied Life Sciences (IALS) , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Jianhan Chen
- Department of Biochemistry and Molecular Biology , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|