1
|
Hadi-Alijanvand H, Di Paola L, Hu G, Leitner DM, Verkhivker GM, Sun P, Poudel H, Giuliani A. Biophysical Insight into the SARS-CoV2 Spike-ACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach. ACS OMEGA 2022; 7:17024-17042. [PMID: 35600142 PMCID: PMC9113007 DOI: 10.1021/acsomega.2c00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/15/2022] [Indexed: 05/08/2023]
Abstract
At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection stage, is missing. In this work, we present a multifaceted computational approach strongly grounded on a biophysical modeling of biological systems, so to disclose the interaction of the SARS-CoV2 spike protein with ACE2 with a special focus to an allosteric regulation of the spike-ACE2 interaction. Our approach includes the following methodologies: Protein Contact Networks and Network Clustering, Targeted Molecular Dynamics, Elastic Network Modeling, Perturbation Response Scanning, and a computational analysis of energy flow and SEPAS as a protein-softness and monomer-based affinity predictor. We applied this approach to free (closed and open) states of spike protein and spike-ACE2 complexes. Eventually, we analyzed the interactions of free and bound forms of spike with hepcidin (HPC), the major hormone in iron regulation, recently addressed as a central player in the COVID19 pathogenesis, with a special emphasis to the most severe outcomes. Our results demonstrate that, compared with closed and open states, the spike protein in the ACE2-bound state shows higher allosteric potential. The correspondence between hinge sites and the Allosteric Modulation Region (AMR) in the S-ACE complex suggests a molecular basis for hepcidin involvement in COVID19 pathogenesis. We verify the importance of AMR in different states of spike and then study its interactions with HPC and the consequence of the HPC-AMR interaction on spike dynamics and its affinity for ACE2. We propose two complementary mechanisms for HPC effects on spike of SARS-CoV-2; (a) HPC acts as a competitive inhibitor when spike is in a preinfection state (open and with no ACE2), (b) the HPC-AMR interaction pushes the spike structure into the safer closed state. These findings need clear molecular in vivo verification beside clinical observations.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department
of Biological Sciences, Institute for Advanced
Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, Rome 00128, Italy
| | - Guang Hu
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- . Phone: +39 (06) 225419634
| | - David M. Leitner
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange 92866, California, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine 92618, California, United States
| | - Peixin Sun
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Humanath Poudel
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Alessandro Giuliani
- Environmental
and Health Department, Istituto Superiore
di Sanità, Rome 00161, Italy
| |
Collapse
|
2
|
Rouhani M, Hadi-Alijanvand H. Effect of Lithium Drug on Binding Affinities of Glycogen Synthase Kinase-3 β to Its Network Partners: A New Computational Approach. J Chem Inf Model 2021; 61:5280-5292. [PMID: 34533953 DOI: 10.1021/acs.jcim.1c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Finding new methods to study the effect of small molecules on protein interaction networks provides us with invaluable tools in the fields of pharmacodynamics and drug design. Lithium is an antimanic drug that has been used for the treatment of bipolar disorder for more than 60 years. Here, we utilized a new approach to study the effect of lithium as a drug on the protein interaction network of GSK-3β as a hub protein and computed the affinities of GSK-3β to its partners in the presence of lithium or sodium ions. For this purpose, ensembles of GSK-3β protein structures were created in the presence of either lithium or sodium ions using adaptive tempering molecular dynamics simulations. The protein binding patches of GSK-3β for its partners were determined, and finally, the affinity of each binding patch to the related partner was computed for structures of ensembles using a monomer-based approach. Besides, by comparing structural dynamics of GSK-3β during MD simulations in the presence of LiCl and NaCl, we suggested a new mechanism for the inhibitory effect of lithium on GSK-3β.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid Hadi-Alijanvand
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
3
|
Hadi-Alijanvand H, Rouhani M. Studying the Effects of ACE2 Mutations on the Stability, Dynamics, and Dissociation Process of SARS-CoV-2 S1/hACE2 Complexes. J Proteome Res 2020; 19:4609-4623. [PMID: 32786692 PMCID: PMC7640954 DOI: 10.1021/acs.jproteome.0c00348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/16/2023]
Abstract
A highly infectious coronavirus, SARS-CoV-2, has spread in many countries. This virus recognizes its receptor, angiotensin-converting enzyme 2 (ACE2), using the receptor binding domain of its spike protein subunit S1. Many missense mutations are reported in various human populations for the ACE2 gene. In the current study, we predict the affinity of many ACE2 variants for binding to S1 protein using different computational approaches. The dissociation process of S1 from some variants of ACE2 is studied in the current work by molecular dynamics approaches. We study the relation between structural dynamics of ACE2 in closed and open states and its affinity for S1 protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological
Sciences, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Maryam Rouhani
- Department of Biological
Sciences, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
4
|
Di Paola L, Hadi-Alijanvand H, Song X, Hu G, Giuliani A. The Discovery of a Putative Allosteric Site in the SARS-CoV-2 Spike Protein Using an Integrated Structural/Dynamic Approach. J Proteome Res 2020; 19:4576-4586. [PMID: 32551648 PMCID: PMC7331933 DOI: 10.1021/acs.jproteome.0c00273] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.
Collapse
Affiliation(s)
- Luisa Di Paola
- Unit of Chemical-Physics Fundamentals
in Chemical Engineering, Department of Engineering,
Università Campus Bio-Medico di
Roma, via Álvaro del Portillo 21, 00128
Rome, Italy
| | - Hamid Hadi-Alijanvand
- Department of Biological Sciences,
Institute for Advanced Studies in Basic Sciences
(IASBS), Zanjan, 45137-66731,
Iran
| | - Xingyu Song
- Center for Systems Biology, Department
of Bioinformatics, School of Biology and Basic Medical Sciences,
Soochow University, Suzhou 215123,
China
| | - Guang Hu
- Center for Systems Biology, Department
of Bioinformatics, School of Biology and Basic Medical Sciences,
Soochow University, Suzhou 215123,
China
| | - Alessandro Giuliani
- Environmental and Health Department,
Istituto Superiore di Sanità,
00161 Rome, Italy
| |
Collapse
|
5
|
Hadi-Alijanvand H. Complex Stability is Encoded in Binding Patch Softness: a Monomer-Based Approach to Predict Inter-Subunit Affinity of Protein Dimers. J Proteome Res 2019; 19:409-423. [PMID: 31795635 DOI: 10.1021/acs.jproteome.9b00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Knowledge about the structure and stability of protein-protein interactions is vital to decipher the behavior of protein systems. Prediction of protein complexes' stability is an interesting topic in the field of structural biology. There are some promising published computational approaches that predict the affinity between subunits of protein dimers using 3D structures of both subunits. In the current study, we classify protein complexes with experimentally measured affinities into distinct classes with different mean affinities. By predicting the mechanical stiffness of the protein binding patch (PBP) region on a single subunit, we successfully predict the assigned affinity class of the PBP in the classification step. Now to predict the experimentally measured affinity between protein monomers in solution, we just need the 3D structure of the suggested PBP on one subunit of the proposed dimer. We designed the SEPAS software and have made the software freely available for academic non-commercial research purposes at " http://biophysics.ir/affinity ". SEPAS predicts the stability of the intended dimer in a classwise manner by utilizing the computed mechanical stiffness of the introduced binding site on one subunit with the minimum accuracy of 0.72.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences , Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan 45137-66731 , Iran
| |
Collapse
|