1
|
Alqhtani HA, Othman SI, Aba Alkhayl FF, Altoom NG, Lamsabhi AM, Kamel EM. Unraveling the mechanism of carbonic anhydrase IX inhibition by alkaloids from Ruta chalepensis: A synergistic analysis of in vitro and in silico data. Biochem Biophys Res Commun 2024; 733:150685. [PMID: 39270414 DOI: 10.1016/j.bbrc.2024.150685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Due to the pivotal role of carbonic anhydrase IX (CA IX) in pathological conditions, there's a pressing need for novel inhibitors to improve patient outcomes and clinical management. Herein, we investigated the inhibitory efficacy of six alkaloids from Ruta chalepensis against CA IX through in vitro inhibition assay and computational modeling. Skimmianine and maculosidine displayed significant inhibitory activity in vitro, with low IC50 values of 105.2 ± 3.2 and 295.7 ± 14.1 nM, respectively. Enzyme kinetics analyses revealed that skimmianine exhibited a mixed inhibition mode, contrasting with the noncompetitive inhibition mechanism observed for the reference drug (acetazolamide), as indicated by intersecting lines in the Lineweaver-Burk plots. The findings of docking calculations revealed that skimmianine and maculosidine exhibited extensive polar interactions with the enzyme. These alkaloids demonstrate substantial binding interactions and occupy identical binding site as acetazolamide, thereby enhancing their efficacy as inhibitors of CA IX. Utilizing a 100 ns molecular dynamics (MD) simulation, the dynamic interactions between isolated alkaloids and CA IX were intensively assessed. Analysis of diverse MD parameters revealed that skimmianine and maculosidine displayed consistent trajectories and notable energy stabilization during their interaction with CA IX. The findings of MM/PBSA analysis depicted the minimum binding free energy for skimmianine and maculosidine. In addition, the Potential Energy Landscape (PEL) analysis revealed distinct and stable conformational states for the CA IX-ligand complexes, with Skimmianine showing the most stable and lowest energy configuration. These computational findings align with experimental results, emphasizing the potential efficacy of skimmianine and maculosidine as inhibitors of CA IX.
Collapse
Affiliation(s)
- Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452 Buraydah, Saudi Arabia
| | - Naif G Altoom
- Department of Biology, King Khalid Military Academy, Riyadh 11459, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
2
|
Siddiquee NH, Talukder MEK, Ahmed E, Zeba LT, Aivy FS, Rahman MH, Barua D, Rumman R, Hossain MI, Shimul MEK, Rama AR, Chowdhury S, Hossain I. Cheminformatics-based analysis identified (Z)-2-(2,5-dimethoxy benzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one as an inhibitor of Marburg replication by interacting with NP. Microb Pathog 2024; 195:106892. [PMID: 39216611 DOI: 10.1016/j.micpath.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family, a non-segmented negative-strand RNA virus. This article represents the computer-aided drug design (CADD) approach for identifying drug-like compounds that prevent the MARV virus disease by inhibiting nucleoprotein, which is responsible for their replication. This study used a wide range of in silico drug design techniques to identify potential drugs. Out of 368 natural compounds, 202 compounds passed ADMET, and molecular docking identified the top two molecules (CID: 1804018 and 5280520) with a high binding affinity of -6.77 and -6.672 kcal/mol, respectively. Both compounds showed interactions with the common amino acid residues SER_216, ARG_215, TYR_135, CYS_195, and ILE_108, which indicates that lead compounds and control ligands interact in the common active site/catalytic site of the protein. The negative binding free energies of CID: 1804018 and 5280520 were -66.01 and -31.29 kcal/mol, respectively. Two lead compounds were re-evaluated using MD modeling techniques, which confirmed CID: 1804018 as the most stable when complexed with the target protein. PC3 of the (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) was 8.74 %, whereas PC3 of the 2'-Hydroxydaidzein (CID: 5280520) was 11.25 %. In this study, (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) unveiled the significant stability of the proteins' binding site in ADMET, Molecular docking, MM-GBSA and MD simulation analysis studies, which also showed a high negative binding free energy value, confirming as the best drug candidate which is found in Angelica archangelica which may potentially inhibit the replication of MARV nucleoprotein.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Bangladesh
| | - Ezaz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Labiba Tasnim Zeba
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Mathematics & Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Farjana Sultana Aivy
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Hasibur Rahman
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Durjoy Barua
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Pharmacy, BGC Trust University, Bangladesh
| | - Rahnumazzaman Rumman
- Bioinformatics Laboratory (BioLab), Bangladesh; Department Of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Ifteker Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Bangladesh
| | - Anika Rahman Rama
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Genetic Engineering and Biotechnology, East West University, Dhaka, Bangladesh
| | - Sristi Chowdhury
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh.
| |
Collapse
|
3
|
Iqbal S, Karim MR, Mohammad S, Ahn JC, Kariyarath Valappil A, Mathiyalagan R, Yang DC, Jung DH, Bae H, Yang DU. In Silico and In Vitro Study of Isoquercitrin against Kidney Cancer and Inflammation by Triggering Potential Gene Targets. Curr Issues Mol Biol 2024; 46:3328-3341. [PMID: 38666938 PMCID: PMC11049307 DOI: 10.3390/cimb46040208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-β-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 μg/mL and 10 μg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.
Collapse
Affiliation(s)
- Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (A.K.V.); (D.-C.Y.)
| | - Md. Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (A.K.V.); (D.-C.Y.)
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (J.C.A.); (R.M.); (D.-H.J.)
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (J.C.A.); (R.M.); (D.-H.J.)
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (A.K.V.); (D.-C.Y.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (J.C.A.); (R.M.); (D.-H.J.)
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (A.K.V.); (D.-C.Y.)
| | - Dae-Hyo Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.M.); (J.C.A.); (R.M.); (D.-H.J.)
| | - Hyocheol Bae
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea; (S.I.); (M.R.K.); (A.K.V.); (D.-C.Y.)
| |
Collapse
|
4
|
Belachew AM, Bachheti RK, Weldekidan AK, Ufgaa MG. Computational prediction and analysis of targeting 17-beta-hydroxysteroid dehydrogenase (17-beta-HSD1) with natural products for colorectal cancer treatment. J Biomol Struct Dyn 2023; 41:7966-7974. [PMID: 36229232 DOI: 10.1080/07391102.2022.2127904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/17/2022] [Indexed: 10/17/2022]
Abstract
Colorectal cancer (CRC) is a type of cancer that occurs in the colon or rectum and kills millions of people each year. Steroid hormones are interconverted between their potent, high-affinity forms by using 17-beta hydroxysteroid dehydrogenase for their respective receptors in these tissues, with a high probability of random genetic errors. Currently, 17-beta-HSD1 studies have revealed the role of steroid metabolism in the development and proliferation of colorectal cancer. However, there is little information on how to target this enzyme with either modern medicine or natural products. In this study, we looked at 17-beta-HSD1 as a target for treating CRC development and proliferation using selected plant metabolites from previous studies. Plants are used to produce medicinal and novel bioactive compounds that are used to treat different infection. They primarily demonstrated anti-cancer effects through the regulation of cancer-related proteins, epigenetic factors and reactive oxygenase species. The study utilized Avogadro, ADMET lab 2.0, SWISS-MODEL, AutoDock, and Gromacs. Five lead molecules were chosen from a pool of plant metabolites based on their affinity for the 17-beta-HSD1 enzyme. Furthermore, two bind with high affinity are resveratrol (DG 11.29 kcal/mol) and folate (DG 12.23 kcal/mol) with low Ki values, while the rest binds with moderate affinity. Molecular dynamic simulation results also revealed that the folate-17-beta-HSD complex and reserverol- 17-beta-HSD1 complex maintained a stable conformation until the end of 100 ns. As a result, reserverol and folate could be used as lead molecules to target 17-beta-HSD1 and provide a promising starting point for further in vivo research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aweke Mulu Belachew
- College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Rakesh Kumar Bachheti
- College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Araya Kahsay Weldekidan
- College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mulugeta Gajaa Ufgaa
- College of Natural and Social science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Islam MN, Pramanik MEA, Hossain MA, Rahman MH, Hossen MS, Islam MA, Miah MMZ, Ahmed I, Hossain AZMM, Haque MJ, Islam AKMM, Ali MN, Jahan RA, Haque ME, Rahman MM, Hasan MS, Rahman MM, Kabir MM, Basak PM, Sarkar MAM, Islam MS, Rahman MR, Prodhan AKMAUD, Mosaddik A, Haque H, Fahmin F, Das HS, Islam MM, Emtia C, Gofur MR, Liang A, Akbar SMF. Identification of Leading Compounds from Euphorbia neriifolia (Dudsor) Extracts as a Potential Inhibitor of SARS-CoV-2 ACE2-RBDS1 Receptor Complex: An Insight from Molecular Docking ADMET Profiling and MD-simulation Studies. Euroasian J Hepatogastroenterol 2023; 13:89-107. [PMID: 38222948 PMCID: PMC10785135 DOI: 10.5005/jp-journals-10018-1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) are deadly and infectious disease that impacts individuals in a variety of ways. Scientists have stepped up their attempts to find an antiviral drug that targets the spike protein (S) of Angiotensin converting enzyme 2 (ACE2) (receptor protein) as a viable therapeutic target for coronavirus. The most recent study examines the potential antagonistic effects of 17 phytochemicals present in the plant extraction of Euphorbia neriifolia on the anti-SARS-CoV-2 ACE2 protein. Computational techniques like molecular docking, absorption, distribution, metabolism, excretion, and toxicity (ADMET) investigations, and molecular dynamics (MD) simulation analysis were used to investigate the actions of these phytochemicals. The results of molecular docking studies showed that the control ligand (2-acetamido-2-deoxy-β-D-glucopyranose) had a binding potential of -6.2 kcal/mol, but the binding potentials of delphin, β-amyrin, and tulipanin are greater at -10.4, 10.0, and -9.6 kcal/mol. To verify their drug-likeness, the discovered hits were put via Lipinski filters and ADMET analysis. According to MD simulations of the complex run for 100 numbers, delphin binds to the SARS-CoV-2 ACE2 receptor's active region with good stability. In root-mean-square deviation (RMSD) and root mean square fluctuation (RMSF) calculations, delphinan, β-amyrin, and tulipanin showed reduced variance with the receptor binding domain subunit 1(RBD S1) ACE2 protein complex. The solvent accessible surface area (SASA), radius of gyration (Rg), molecular surface area (MolSA), and polar surface area (PSA) validation results for these three compounds were likewise encouraging. The convenient binding energies across the 100 numbers binding period were discovered by using molecular mechanics of generalized born and surface (MM/GBSA) to estimate the ligand-binding free energies to the protein receptor. All things considered, the information points to a greater likelihood of chemicals found in Euphorbia neriifolia binding to the SARS-CoV-2 ACE2 active site. To determine these lead compounds' anti-SARS-CoV-2 potential, in vitro and in vivo studies should be conducted. How to cite this article Islam MN, Pramanik MEA, Hossain MA, et al. Identification of Leading Compounds from Euphorbia Neriifolia (Dudsor) Extracts as a Potential Inhibitor of SARS-CoV-2 ACE2-RBDS1 Receptor Complex: An Insight from Molecular Docking ADMET Profiling and MD-simulation Studies. Euroasian J Hepato-Gastroenterol 2023;13(2):89-107.
Collapse
Affiliation(s)
- Md Nur Islam
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Md Enayet Ali Pramanik
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China; On-Farm Research Division, Bangladesh Agricultural Research Institute, Rajshahi, Bangladesh
| | - Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University (BSMRSTU), Gopalganj, Bangladesh
| | - Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Ashraful Islam
- Department of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Istiak Ahmed
- Department of Surgery, Rajshahi Medical College Hospital, Rajshahi, Bangladesh
| | | | - Md Jawadul Haque
- Department of Community Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | - AKM Monoarul Islam
- Department of Nephrology, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Nowshad Ali
- Department of Pediatric Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | | | - Md Enamul Haque
- Department of Ortho-Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Munzur Rahman
- Department of Ortho-Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Sharif Hasan
- Department of Cardiology, Mymensingh Medical College Hospital, Mymensingh, Bangladesh
| | | | - Md Mamun Kabir
- Department of Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | | | | | - Md Shafiqul Islam
- Department of Gastroenterology, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Rashedur Rahman
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Ashik Mosaddik
- Director, Center for Interdisciplinary Research, Varendra University, Rajshahi, Bangladesh
| | - Humayra Haque
- Department of Anaesthesia, Analgesia & Intensive Care Unit, Chattogram Medical College, Chattogram, Bangladesh
| | - Fahmida Fahmin
- Department of Paediatric, Mymensingh Medical College Hospital, Mymensingh, Bangladesh
| | | | - Md Manzurul Islam
- Director, Prime Minister Office and Private Secretary of Economic Advisor to the Hon'ble Prime Minister of Bangladesh, Prime Minister's Office, Tejgaon, Dhaka, Bangladesh
| | - Chandrima Emtia
- Laboratory of Systems Ecology, Faculty of Agriculture, Saga University, Honjo, Saga, Japan
| | - Md Royhan Gofur
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China; On-Farm Research Division, Bangladesh Agricultural Research Institute, Rajshahi, Bangladesh
| | - Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine; Research Center for Global and Local Infectious Diseases, Faculty of Medicine, Oita University, Oita; Miyakawa Memorial Research Foundation, Tokyo, Japan
| |
Collapse
|
6
|
Biswas P, Bibi S, Yousafi Q, Mehmood A, Saleem S, Ihsan A, Dey D, Hasan Zilani MN, Hasan MN, Saleem R, Awaji AA, Fahmy UA, Abdel-Daim MM. Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules 2023; 28:2977. [PMID: 37049742 PMCID: PMC10095937 DOI: 10.3390/molecules28072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Qudsia Yousafi
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Asim Mehmood
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Shahzad Saleem
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Awais Ihsan
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rasha Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah 65431, Saudi Arabia
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Rai D, Khatua S, Taraphder S. Structure and Dynamics of the Isozymes II and IX of Human Carbonic Anhydrase. ACS OMEGA 2022; 7:31149-31166. [PMID: 36092600 PMCID: PMC9453958 DOI: 10.1021/acsomega.2c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and functional dynamics of the known isozymes of HCA. The main objective of this Article is to report the first bench-marking study on the structure and dynamics of the two most efficient isozymes, HCA II and IX, at neutral pH using classical molecular dynamics (MD) and constant pH MD (CpHMD) simulations combined with umbrella sampling, transition path sampling, and Markov state models. Starting from the known crystal structures of HCA II and the monomeric catalytic domain of HCA IX (labeled as HCA IX-c), we have generated classical MD and CpHMD trajectories (of length 1 μs each). In all cases, the overall stability, RMSD, and secondary structure segments of the two isozymes are found to be quite similar. Functionally important dynamics of these two enzymes have been probed in terms of active site hydration, coordination of the Zn(II) ion to a transient excess water, and the formation of putative proton transfer paths. The most important difference between the two isozymes is observed for the side-chain fluctuations of His-64 that is expected to shuttle an excess proton out of the active site as a part of the rate-determining intramolecular proton transfer reaction. The relative stability of the stable inward and outward conformations of the His-64 side-chain and the underlying free energy surfaces are found to depend strongly on the isozyme. In each case, a lower free energy barrier is detected between predominantly inward conformations from predominantly outward ones when simulated under constant pH conditions. The kinetic rate constants of interconversion between different free energy basins are found to span 107-108 s-1 with faster conformational transitions predicted at constant pH condition. The estimated rate constants and free energies are expected to validate if the fluctuation of the His-64 side-chain in HCA IX may have a significance similar to that known in the multistep catalytic cycle of HCA II.
Collapse
|
8
|
Evaluation of Melongosides as Potential Inhibitors of NS2B-NS3 Activator-Protease of Dengue Virus (Serotype 2) by Using Molecular Docking and Dynamics Simulation Approach. J Trop Med 2022; 2022:7111786. [PMID: 36051190 PMCID: PMC9427285 DOI: 10.1155/2022/7111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Dengue is a Flavivirus infection transmitted through mosquitoes of the Aedes genus, which is known to occur in over 100 countries of the world. Dengue has no available drugs for treatment; CYD-TDV is the only vaccine thus far approved for use by a few countries in the world. In the absence of drugs and a widely approved vaccine, attention has been focused on plant-derived compounds to the discovery of a potential therapeutic for DENV. The present study aimed to determine, in silico, the binding energies of the steroidal saponins, melongosides, to NS2B-NS3 activator protease of DENV-2, which plays an essential role in the viral replication. The blind molecular docking studies carried out gave binding energies (ΔG = −kcal/mol) of melongosides B, F, G, H, N, O, and P as 7.7, 8.2, 7.6, 7.8, 8.3, 8.0, and 8.0, respectively. All the melongosides interacted with the NS3 protease part of NS2B-NS3. Melongosides B, F, and N showed interactions with His51, while melongoside G interacted with Asp75 of NS3, to be noted, these are important amino acid residues in the catalytic site of the NS3 protease. However, the 200 ns molecular dynamic simulation experiment indicates significant stability of the protein-ligand interactions with the RMSD values of 2.5 Å, thus suggesting a better docking position and no disruption of the protein-ligand structure. Taken together, melongosides need further attention for more scientific studies as a DENV inhibitory agent, which if proven, in vivo and in clinical trials, can be a useful therapeutic agent against at least DENV-2.
Collapse
|
9
|
Chaieb K, Kouidhi B, Hosawi SB, Baothman OA, Zamzami MA, Altayeb HN. Computational screening of natural compounds as putative quorum sensing inhibitors targeting drug resistance bacteria: Molecular docking and molecular dynamics simulations. Comput Biol Med 2022; 145:105517. [DOI: 10.1016/j.compbiomed.2022.105517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
|
10
|
Samad A, Huq MA, Rahman MS. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer. Sci Rep 2022; 12:1539. [PMID: 35087187 PMCID: PMC8795118 DOI: 10.1038/s41598-022-05621-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Minichromosome Maintenance Complex Component 7 (MCM7) is a key component of the DNA replication licensing factor and hexamer MCM (MCM2-7) complex that regulates the DNA replication process. The MCM7 protein is associated with tumor cell proliferation that plays an important role in different human cancer progression. As the protein is highly expressed during the cancer development process, therefore, inhibition of the protein can be utilized as a treatment option for different human cancer. However, the study aimed to identify potential small molecular drug candidates against the MCM7 protein that can utilize treatment options for human cancer. Initially, the compounds identified from protein-drugs network analysis have been retrieved from NetworkAnalyst v3.0 server and screened through molecular docking, MM-GBSA, DFT, pharmacokinetics, toxicity, and molecular dynamics (MD) simulation approach. Two compounds namely Dasatinib (CID_3062316) and Bortezomib (CID_387447) have been identified throughout the screening process, which have the highest negative binding affinity (Kcal/mol) and binding free energy (Kcal/mol). The pharmacokinetics and toxicity analysis identified drug-like properties and no toxicity properties of the compounds, where 500 ns MD simulation confirmed structural stability of the two compounds to the targeted proteins. Therefore, we can conclude that the compounds dasatinib and bortezomib can inhibit the activity of the MCM7 and can be developed as a treatment option against human cancer.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
11
|
Hasan A, Biswas P, Bondhon TA, Jannat K, Paul TK, Paul AK, Jahan R, Nissapatorn V, Mahboob T, Wilairatana P, Hasan MN, de Lourdes Pereira M, Wiart C, Rahmatullah M. Can Artemisia herba-alba Be Useful for Managing COVID-19 and Comorbidities? Molecules 2022; 27:492. [PMID: 35056809 PMCID: PMC8779608 DOI: 10.3390/molecules27020492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant's ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant's phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.
Collapse
Affiliation(s)
- Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (P.B.); (M.N.H.)
| | - Tohmina Afroze Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Tridib K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (V.N.); (T.M.)
| | - Tooba Mahboob
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (V.N.); (T.M.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (P.B.); (M.N.H.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (A.H.); (T.A.B.); (K.J.); (T.K.P.); (R.J.)
| |
Collapse
|
12
|
Alam R, Imon RR, Kabir Talukder ME, Akhter S, Hossain MA, Ahammad F, Rahman MM. GC-MS analysis of phytoconstituents from Ruellia prostrata and Senna tora and identification of potential anti-viral activity against SARS-CoV-2. RSC Adv 2021; 11:40120-40135. [PMID: 35494115 PMCID: PMC9044520 DOI: 10.1039/d1ra06842c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is an etiologic agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. The virus has rapidly extended globally and taken millions of lives due to the unavailability of therapeutics candidates against the virus. Till now, no specific drug candidates have been developed that can prevent or treat infections caused by the pathogen. The main protease (Mpro) of the SARS-CoV-2 plays a pivotal role in mediating viral replication and mechanistically inhibition of the protein can hinder the replication and infection process of the virus. Therefore, the study aimed to identify the natural bioactive compounds against the virus that can block the activity of the Mpro and subsequently block viral infections. Initially, a total of 96 phytochemicals from Ruellia prostrata Poir. and Senna tora (L.) Roxb. plants were identified through the gas chromatography-mass spectrometry (GC-MS) analytical method. Subsequently, the compounds were screened through molecular docking, absorption, distribution, metabolism, excretion (ADME), toxicity (T), and molecular dynamics (MD) simulation approach. The molecular docking method initially identified four molecules having a PubChem CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 with a binding affinity ranging between −6.067 to −6.53 kcal mol−1 to the active site of the target protein. All the selected compounds exhibit good pharmacokinetics and toxicity properties. Finally, the four compounds were further evaluated based on the MD simulation methods that confirmed the binding stability of the compounds to the targeted protein. The computational approaches identified the best four compounds CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 that can be developed as a treatment option of SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work. Protease (Mpro) of SARS-CoV-2 has been identified as being able to hinder the replication process of the virus. Using GC-MS analytical methods, phytochemicals were identified from different medicinal plants that resulted in inhibitory activity of the molecules against Mpro.![]()
Collapse
Affiliation(s)
- Rahat Alam
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh .,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh
| | - Raihan Rahman Imon
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh .,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh
| | - Md Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh .,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh
| | - Shahina Akhter
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh .,Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC) Foy's Lake, Khulshi Chittagong-4202 Bangladesh
| | - Md Alam Hossain
- Department of Computer Science and Engineering, Jashore University of Science and Technology Jashore-7408 Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh .,Department of Biology, Faculty of Science, King Abdul-Aziz University Jeddah-21589 Saudi Arabia
| | - Md Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh
| |
Collapse
|
13
|
Paul GK, Mahmud S, Hasan MM, Zaman S, Uddin MS, Saleh MA. Biochemical and in silico study of leaf and bark extracts from Aphanamixis polystachya against common pathogenic bacteria. Saudi J Biol Sci 2021; 28:6592-6605. [PMID: 34764775 PMCID: PMC8568816 DOI: 10.1016/j.sjbs.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aphanamixis polystachya may be a natural, renewable resource against antibiotic-resistant bacterial infections. The antibacterial activity of A. polystachya leaf and bark extracts was investigated against three antibiotic-resistant bacterial species and one fungus. Methanolic leaf extract showed only limited antibacterial activity but both methanolic and aqueous bark extract showed high antimicrobial activity. In an antioxidant activity test, leaf and bark extracts exhibited 50% free radical scavenging at a concentration of 107.14 ± 3.14 μg/mL and 97.13 ± 3.05 μg/mL, respectively, indicating that bark extracts offer more antioxidative activity than leaf extracts. Bark extracts also showed lower toxicity than leaf extracts. This suggests that bark extracts may offer greater development potential than leaf extracts. The molecular dynamics were also investigated through the simulated exploration of multiple potential interactions to understand the interaction dynamics (root-mean-square deviation, solvent-accessible surface area, radius of gyration, and the hydrogen bonding of chosen compounds to protein targets) and possible mechanisms of inhibition. This molecular modeling of compounds derived from A. polystachya revealed that inhibition may occur by binding to the active sites of the target proteins of the tested bacterial strains. A. polystachya bark extract may be used as a natural source of drugs to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | | | - Md. Mehedi Hasan
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
14
|
Biswas P, Dey D, Rahman A, Islam MA, Susmi TF, Kaium MA, Hasan MN, Rahman MDH, Mahmud S, Saleh MA, Paul P, Rahman MR, Saber MA, Song H, Rahman MA, Kim B. Analysis of SYK Gene as a Prognostic Biomarker and Suggested Potential Bioactive Phytochemicals as an Alternative Therapeutic Option for Colorectal Cancer: An In-Silico Pharmaco-Informatics Investigation. J Pers Med 2021; 11:888. [PMID: 34575665 PMCID: PMC8470848 DOI: 10.3390/jpm11090888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SYK gene regulates the expression of SYK kinase (Spleen tyrosine kinase), an important non-receptor protein-tyrosine kinase for immunological receptor-mediated signaling, which is also considered a tumor growth metastasis initiator. An onco-informatics analysis was adopted to evaluate the expression and prognostic value of the SYK gene in colorectal cancer (CRC), the third most fatal cancer type; of late, it may be a biomarker as another targeted site for CRC. In addition, identify the potential phytochemicals that may inhibit the overexpression of the SYK kinase protein and minimize the human CRC. MATERIALS & METHODS The differential expression of the SYK gene was analyzed using several transcriptomic databases, including Oncomine, UALCAN, GENT2, and GEPIA2. The server cBioPortal was used to analyze the mutations and copy number alterations, whereas GENT2, Gene Expression Profiling Interactive Analysis (GEPIA), Onco-Lnc, and PrognoScan were used to examine the survival rate. The protein-protein interaction network of SYK kinase and its co-expressed genes was conducted via Gene-MANIA. Considering the SYK kinase may be the targeted site, the selected phytochemicals were assessed by molecular docking using PyRx 0.8 packages. Molecular interactions were also observed by following the Ligplot+ version 2.2. YASARA molecular dynamics simulator was applied for the post-validation of the selected phytochemicals. RESULTS Our result reveals an increased level of mRNA expression of the SYK gene in colorectal adenocarcinoma (COAD) samples compared to those in normal tissues. A significant methylation level and various genetic alterations recurrence of the SYK gene were analyzed where the fluctuation of the SYK alteration frequency was detected across different CRC studies. As a result, a lower level of SYK expression was related to higher chances of survival. This was evidenced by multiple bioinformatics platforms and web resources, which demonstrated that the SYK gene can be a potential biomarker for CRC. In this study, aromatic phytochemicals, such as kaempferol and glabridin that target the macromolecule (SYK kinase), showed higher stability than the controls, and we have estimated that these bioactive potential phytochemicals might be a useful option for CRC patients after the clinical trial. CONCLUSIONS Our onco-informatics investigation suggests that the SYK gene can be a potential prognostic biomarker of CRC. On the contrary, SYK kinase would be a major target, and all selected compounds were validated against the protein using in-silico drug design approaches. Here, more in vitro and in vivo analysis is required for targeting SYK protein in CRC.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Md. Aminul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
| | - Md. Abu Kaium
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh; (P.B.); (A.R.); (M.A.I.); (T.F.S.); (M.A.K.)
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - MD. Hasanur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (M.A.S.)
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh; (D.D.); (P.P.)
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Md. Al Saber
- Biotechnology, University of Pécs, Medical School, 7624 Pécs, Hungary;
| | - Hangyeul Song
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
15
|
Mahmud S, Uddin MAR, Paul GK, Shimu MSS, Islam S, Rahman E, Islam A, Islam MS, Promi MM, Emran TB, Saleh MA. Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Brief Bioinform 2021; 22:1402-1414. [PMID: 33517367 PMCID: PMC7929365 DOI: 10.1093/bib/bbaa428] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The new coronavirus (SARS-CoV-2) halts the world economy and caused unbearable medical emergency due to high transmission rate and also no effective vaccine and drugs has been developed which brought the world pandemic situations. The main protease (Mpro) of SARS-CoV-2 may act as an effective target for drug development due to the conservation level. Herein, we have employed a rigorous literature review pipeline to enlist 3063 compounds from more than 200 plants from the Asian region. Therefore, the virtual screening procedure helps us to shortlist the total compounds into 19 based on their better binding energy. Moreover, the Prime MM-GBSA procedure screened the compound dataset further where curcumin, gartanin and robinetin had a score of (-59.439, -52.421 and - 47.544) kcal/mol, respectively. The top three ligands based on binding energy and MM-GBSA scores have most of the binding in the catalytic groove Cys145, His41, Met165, required for the target protein inhibition. The molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, solvent accessible surface area, radius of gyration and hydrogen bond analysis from simulation trajectories. The post-molecular dynamics analysis also confirms the interactions of the curcumin, gartanin and robinetin in the similar binding pockets. Our computational drug designing approach may contribute to the development of drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Shafi Mahmud
- Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | - Mohammad Abu Raihan Uddin
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | | | - Saiful Islam
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | - Ekhtiar Rahman
- Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Md Samiul Islam
- Department of Molecular Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Maria Meha Promi
- Genetic Engineering and Biotechnology at the University of Rajshahi, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy at the BGC Trust University, Bangladesh
- University of Chittagong, PhD from Graduate School of Medicines, Kanazawa University, Japan
| | - Md Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Administration Building 1, Rajshahi 6205, Bangladesh
| |
Collapse
|
16
|
Rakib A, Nain Z, Sami SA, Mahmud S, Islam A, Ahmed S, Siddiqui ABF, Babu SMOF, Hossain P, Shahriar A, Nainu F, Emran TB, Simal-Gandara J. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation. Brief Bioinform 2021; 22:1476-1498. [PMID: 33623995 PMCID: PMC7929402 DOI: 10.1093/bib/bbab045] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic by the World Health Organization, and the situation worsens daily, associated with acute increases in case fatality rates. The main protease (Mpro) enzyme produced by SARS-CoV-2 was recently demonstrated to be responsible for not only viral reproduction but also impeding host immune responses. The element selenium (Se) plays a vital role in immune functions, both directly and indirectly. Thus, we hypothesised that Se-containing heterocyclic compounds might curb the activity of SARS-CoV-2 Mpro. We performed a molecular docking analysis and found that several of the selected selenocompounds showed potential binding affinities for SARS-CoV-2 Mpro, especially ethaselen (49), which exhibited a docking score of -6.7 kcal/mol compared with the -6.5 kcal/mol score for GC376 (positive control). Drug-likeness calculations suggested that these compounds are biologically active and possess the characteristics of ideal drug candidates. Based on the binding affinity and drug-likeness results, we selected the 16 most effective selenocompounds as potential anti-COVID-19 drug candidates. We also validated the structural integrity and stability of the drug candidate through molecular dynamics simulation. Using further in vitro and in vivo experiments, we believe that the targeted compound identified in this study (ethaselen) could pave the way for the development of prospective drugs to combat SARS-CoV-2 infections and trigger specific host immune responses.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Ave, Memphis, TN 38163, USA
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Saad Ahmed Sami
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Ashiqul Islam
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Bangladesh
| | - Shahriar Ahmed
- Department of Pharmacy, University of Chittagong, Bangladesh
| | | | | | - Payar Hossain
- Bachelor of Pharmacy professional degree focused in Pharmacy from University of Chittagong, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Firzan Nainu
- Faculty of Pharmacy Universitas Hasanuddin, Indonesia
| | | | | |
Collapse
|