1
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
3
|
Baweja GS, Gupta S, Kumar B, Patel P, Asati V. Recent updates on structural insights of MAO-B inhibitors: a review on target-based approach. Mol Divers 2024; 28:1823-1845. [PMID: 36977955 PMCID: PMC10047469 DOI: 10.1007/s11030-023-10634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by slow movement, tremors, and stiffness caused due to loss of dopaminergic neurons caused in the brain's substantia nigra. The concentration of dopamine is decreased in the brain. Parkinson's disease may be happened because of various genetic and environmental factors. Parkinson's disease is related to the irregular expression of the monoamine oxidase (MAO) enzyme, precisely type B, which causes the oxidative deamination of biogenic amines such as dopamine. MAO-B inhibitors, available currently in the market, carry various adverse effects such as dizziness, nausea, vomiting, lightheadedness, fainting, etc. So, there is an urgent need to develop new MAO-B inhibitors with minimum side effects. In this review, we have included recently studied compounds (2018 onwards). Agrawal et al. reported MAO-B inhibitors with IC50 0.0051 µM and showed good binding affinity. Enriquez et al. reported a compound with IC50 144 nM and bind with some critical amino acid residue Tyr60, Ile198, and Ile199. This article also describes the structure-activity relationship of the compounds and clinical trial studies of related derivatives. These compounds may be used as lead compounds to develop potent compounds as MAO-B inhibitors.
Collapse
Affiliation(s)
- Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Al-Saad OM, Gabr M, Darwish SS, Rullo M, Pisani L, Miniero DV, Liuzzi GM, Kany AM, Hirsch AKH, Abadi AH, Engel M, Catto M, Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity. Eur J Med Chem 2024; 269:116266. [PMID: 38490063 DOI: 10.1016/j.ejmech.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.
Collapse
Affiliation(s)
- Omar M Al-Saad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
5
|
de Oliveira AB, Bresolin L, Beck J, Daniels J. N-Methyl-2-{3-methyl-2-[(2 Z)-pent-2-en-1-yl]cyclo-pent-2-en-1-yl-idene}hydrazinecarbo-thio-amide. IUCRDATA 2024; 9:x240013. [PMID: 38322031 PMCID: PMC10842277 DOI: 10.1107/s2414314624000130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The equimolar and hydro-chloric acid-catalysed reaction between cis-jasmone and 4-methyl-thio-semicarbazide in ethano-lic solution yields the title compound, C13H21N3S (common name: cis-jasmone 4-methyl-thio-semicarbazone). Two mol-ecules with all atoms in general positions are present in the asymmetric unit. In one of them, the carbon chain is disordered [site occupancy ratio = 0.821 (3):0.179 (3)]. The thio-semicarbazone entities [N-N-C(=S)-N] are approximately planar, with the maximum deviation from the mean plane through the selected atoms being -0.0115 (16) Å (r.m.s.d. = 0.0078 Å) for the non-disordered mol-ecule and 0.0052 (14) Å (r.m.s.d. = 0.0031 Å) for the disordered one. The mol-ecules are not planar, since the jasmone groups have a chain with sp 3-hybridized carbon atoms and, in addition, the thio-semicarbazone fragments are attached to the respective carbon five-membered rings and the dihedral angles between them for each mol-ecule amount to 8.9 (1) and 6.3 (1)°. In the crystal, the mol-ecules are connected through pairs of N-H⋯S and C-H⋯S inter-actions into crystallographically independent centrosymmetric dimers, in which rings of graph-set motifs R 2 2(8) and R 2 1(7) are observed. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.6%), H⋯S/S⋯H (16.7%), H⋯C/C⋯H (7.5%) and H⋯N/N⋯H (4.9%) inter-actions [considering the two crystallographically independent mol-ecules and only the disordered atoms with the highest s.o.f. for the evaluation].
Collapse
Affiliation(s)
- Adriano Bof de Oliveira
- Departamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
| | - Leandro Bresolin
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil
| | - Johannes Beck
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Jörg Daniels
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| |
Collapse
|
6
|
Benny F, Oh JM, Kumar S, Abdelgawad MA, Ghoneim MM, Abdel-Bakky MS, Kukerti N, Jose J, Kim H, Mathew B. Isatin-based benzyloxybenzene derivatives as monoamine oxidase inhibitors with neuroprotective effect targeting neurogenerative disease treatment. RSC Adv 2023; 13:35240-35250. [PMID: 38053684 PMCID: PMC10694828 DOI: 10.1039/d3ra07035b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Eighteen isatin-based benzyloxybenzaldehyde derivatives from three subseries, ISB, ISFB, and ISBB, were synthesized and their ability to inhibit monoamine oxidase (MAO) was evaluated. The inhibitory activity of all synthesized compounds was found to be more profound against MAO-B than MAO-A. Compound ISB1 most potently inhibited MAO-B with an IC50 of 0.124 ± 0.007 μM, ensued by ISFB1 (IC50 = 0.135 ± 0.002 μM). Compound ISFB1 most potently inhibited MAO-A with an IC50 of 0.678 ± 0.006 μM, ensued by ISBB3 (IC50 = 0.731 ± 0.028 μM), and had the highest selectivity index (SI) value (55.03). The three sub-parental compounds, ISB1, ISFB1, and ISBB1, had higher MAO-B inhibition than the other derivatives, indicating that the substitutions of the 5-H in the A-ring of isatin diminished the inhibition of MAO-A and MAO-B. Among these, ISB1 (para-benzyloxy group in the B-ring) displayed more significant MAO-B inhibition when compared to ISBB1 (meta-benzyloxy group in the B-ring). ISB1 and ISFB1 were identified to be competitive and reversible MAO-B inhibitors, having Ki values of 0.055 ± 0.010, and 0.069 ± 0.025 μM, respectively. Furthermore, in the parallel artificial membrane penetration assay, ISB1 and ISFB1 traversed the blood-brain barrier in the in vitro condition. Additionally, the current study found that ISB1 decreased rotenone-induced cell death in SH-SY5Y neuroblastoma cells. In docking and simulation studies, the hydrogen bonding formed by the imino nitrogen in ISB1 and the pi-pi stacking interaction of the phenyl ring in isatin significantly aided in the protein-ligand complex's stability, effectively inhibiting MAO-B. According to these observations, the MAO-B inhibitors ISB1 and ISFB1 were potent, selective, and reversible, making them conceivable therapies for neurological diseases.
Collapse
Affiliation(s)
- Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72341 Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University Ad Diriyah 13713 Saudi Arabia
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University Buraydah 51452 Saudi Arabia
| | - Neelima Kukerti
- School of Pharmacy, Graphic Era Hill University Dehradun Uttarakhand 248002 India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE University Mangalore Karnataka 575018 India
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| |
Collapse
|
7
|
Mitkov J, Kondeva-Burdina M, Peikova L, Georgieva M, Zlatkov A. Design, synthesis and evaluation of semi- and thiosemicarbazides containing a methylxanthine moiety with in vitro neuroprotective and MAO-B inhibitory activities. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2098819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Lily Peikova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
Vázquez-Mendoza LH, Mendoza-Figueroa HL, García-Vázquez JB, Correa-Basurto J, García-Machorro J. In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. Int J Mol Sci 2022; 23:3987. [PMID: 35409348 PMCID: PMC8999907 DOI: 10.3390/ijms23073987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The epidemic caused by the SARS-CoV-2 coronavirus, which has spread rapidly throughout the world, requires urgent and effective treatments considering that the appearance of viral variants limits the efficacy of vaccines. The main protease of SARS-CoV-2 (Mpro) is a highly conserved cysteine proteinase, fundamental for the replication of the coronavirus and with a specific cleavage mechanism that positions it as an attractive therapeutic target for the proposal of irreversible inhibitors. A structure-based strategy combining 3D pharmacophoric modeling, virtual screening, and covalent docking was employed to identify the interactions required for molecular recognition, as well as the spatial orientation of the electrophilic warhead, of various drugs, to achieve a covalent interaction with Cys145 of Mpro. The virtual screening on the structure-based pharmacophoric map of the SARS-CoV-2 Mpro in complex with an inhibitor N3 (reference compound) provided high efficiency by identifying 53 drugs (FDA and DrugBank databases) with probabilities of covalent binding, including N3 (Michael acceptor) and others with a variety of electrophilic warheads. Adding the energy contributions of affinity for non-covalent and covalent docking, 16 promising drugs were obtained. Our findings suggest that the FDA-approved drugs Vaborbactam, Cimetidine, Ixazomib, Scopolamine, and Bicalutamide, as well as the other investigational peptide-like drugs (DB04234, DB03456, DB07224, DB7252, and CMX-2043) are potential covalent inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Luis Heriberto Vázquez-Mendoza
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
- Cátedras CONACyT-Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Posgrado en Farmacología de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (L.H.V.-M.); (J.C.-B.)
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico;
| |
Collapse
|
9
|
D'Agostino I, Mathew GE, Angelini P, Venanzoni R, Angeles Flores G, Angeli A, Carradori S, Marinacci B, Menghini L, Abdelgawad MA, Ghoneim MM, Mathew B, Supuran CT. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem 2022; 37:986-993. [PMID: 35322729 PMCID: PMC8956313 DOI: 10.1080/14756366.2022.2055009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1–9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1–9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Palakkathondi A, Oh JM, Dev S, Rangarajan TM, Kaipakasseri S, Kavully FS, Gambacorta N, Nicolotti O, Kim H, Mathew B. (Hetero-)(arylidene)arylhydrazides as Multitarget-Directed Monoamine Oxidase Inhibitors. ACS COMBINATORIAL SCIENCE 2020; 22:592-599. [PMID: 33047950 DOI: 10.1021/acscombsci.0c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fourteen (hetero-)(arylidene)arylhydrazide derivatives (ABH1-ABH14) were synthesized, and their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) were evaluated. Compound ABH5 most potently inhibited MAO-B with an IC50 value of 0.025 ± 0.0019 μM; ABH2 and ABH3 exhibited high IC50 values as well. Most of the compounds weakly inhibited MAO-A, except ABH5 (IC50 = 3.31 ± 0.41 μM). Among the active compounds, ABH2 showed the highest selectivity index (SI) of 174 for MAO-B, followed by ABH5 (SI = 132). ABH3 and ABH5 effectively inhibited AChE with IC50 values of 15.7 ± 6.52 and 16.5 ± 7.29 μM, respectively, whereas the other compounds were weak inhibitors of AChE. ABH5 was shown to be a reversible competitive inhibitor for MAO-A and MAO-B with Ki values of 0.96 ± 0.19 and 0.024 ± 0.0077 μM, respectively, suggesting that this molecule can be considered as an interesting candidate for further development as a multitarget inhibitor relating to neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - T. M. Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, India
| |
Collapse
|
11
|
Zhang Z, Zhou Y, Zhao H, Xu J, Yang X. Association Between Pathophysiological Mechanisms of Diabetic Retinopathy and Parkinson's Disease. Cell Mol Neurobiol 2020; 42:665-675. [PMID: 32880791 DOI: 10.1007/s10571-020-00953-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/22/2020] [Indexed: 11/27/2022]
Abstract
Diabetic retinopathy, the most common complication of diabetes, is a neurodegenerative disease in the eye. And Parkinson's disease, affecting the health of 1-2% of people over 60 years old throughout the world, is the second largest neurodegenerative disease in the brain. As the understanding of diabetic retinopathy and Parkinson's disease deepens, the two diseases are found to show correlation in incidence, similarity in clinical presentation, and close association in pathophysiological mechanisms. To reveal the association between pathophysiological mechanisms of the two disease, in this review, the shared pathophysiological factors of diabetic retinopathy and Parkinson's disease are summarized and classified into dopaminergic system, circadian rhythm, neurotrophic factors, α-synuclein, and Wnt signaling pathways. Furthermore, similar and different mechanisms so far as the shared pathophysiological factors of the two disorders are discussed systematically. Finally, a brief summary and new perspectives are presented to provide new directions for further efforts on the association, exploration, and clinical prevention and treatment of diabetic retinopathy and Parkinson's disease.
Collapse
Affiliation(s)
- Zhuoqing Zhang
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yikun Zhou
- Department of Endocrinology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Haiyan Zhao
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinghui Xu
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiaochun Yang
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Design and synthesis of novel benzyloxy-tethered-chromone-carboxamide derivatives as potent and selective human monoamine oxidase-b inhibitors. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|