1
|
Pal R, Teli G, Sengupta S, Maji L, Purawarga Matada GS. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC). J Biomol Struct Dyn 2024; 42:9795-9811. [PMID: 37642992 DOI: 10.1080/07391102.2023.2252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Almost 80% of lung cancer diagnoses each year correspond to non-small cell lung cancer (NSCLC). The percentage of NSCLC with EGFR overexpression ranges from 40% to 89%, with squamous tumors showing the greatest rates (89%) and adenocarcinomas showing the lowest rates (41%). Therefore, in NSCLC therapy, blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR has exhibited significant improvement. In this view, several small molecules particularly pyrimidine/fused pyrimidine scaffolds were intended for molecular hybridization to develop EGFR-TK inhibitors. However, the associated limitation such as resistance and genetic mutation along with adverse effects, constrained the long-term treatment and effectiveness of such medication. Therefore, in recent years, pyrimidine derivatives were uncovered as potential EGFR TKIs. The present review summarised the research progress of EGFR TKIs to dazed structure-activity relationship, biological evaluation, and comparative docking studies of pyrimidine compounds. We have added the comparative docking analysis followed by the molecular simulation study against the four different PDBs of EGFR to strengthen the already existing research. Docking analysis unfolded that compound 14 resulted as noticeable with all different PDB and managed to interact with some of the crucial amino acid residues. From a future perspective, researchers must develop a more selective inhibitor, that can selectively target the mutation. Our review will support medicinal chemists in the direction of the development of novel pyrimidine-based EGFR TKIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Zhu Y, Shi J, Wang Q, Zhu Y, Li M, Tian T, Shi H, Shang K, Yin Z, Zhang F. Novel dual-pathogen multi-epitope mRNA vaccine development for Brucella melitensis and Mycobacterium tuberculosis in silico approach. PLoS One 2024; 19:e0309560. [PMID: 39466745 PMCID: PMC11515988 DOI: 10.1371/journal.pone.0309560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 10/30/2024] Open
Abstract
Brucellosis and Tuberculosis, both of which are contagious diseases, have presented significant challenges to global public health security in recent years. Delayed treatment can exacerbate the conditions, jeopardizing patient lives. Currently, no vaccine has been approved to prevent these two diseases simultaneously. In contrast to traditional vaccines, mRNA vaccines offer advantages such as high efficacy, rapid development, and low cost, and their applications are gradually expanding. This study aims to develop multi-epitope mRNA vaccines argeting Brucella melitensis and Mycobacterium tuberculosis H37Rv (L4 strain) utilizing immunoinformatics approaches. The proteins Omp25, Omp31, MPT70, and MPT83 from the specified bacteria were selected to identify the predominant T- and B-cell epitopes for immunological analysis. Following a comprehensive evaluation, a vaccine was developed using helper T lymphocyte epitopes, cytotoxic T lymphocyte epitopes, linear B-cell epitopes, and conformational B-cell epitopes. It has been demonstrated that multi-epitope mRNA vaccines exhibit increased antigenicity, non-allergenicity, solubility, and high stability. The findings from molecular docking and molecular dynamics simulation revealed a robust and enduring binding affinity between multi-epitope peptides mRNA vaccines and TLR4. Ultimately, Subsequently, following the optimization of the nucleotide sequence, the codon adaptation index was calculated to be 1.0, along with an average GC content of 54.01%. This indicates that the multi-epitope mRNA vaccines exhibit potential for efficient expression within the Escherichia coli(E. coli) host. Analysis through immune modeling indicates that following administration of the vaccine, there may be variation in immunecell populations associated with both innate and adaptive immune reactions. These types encompass helper T lymphocytes (HTL), cytotoxic T lymphocytes (CTL), regulatory T lymphocytes, natural killer cells, dendritic cells and various immune cell subsets. In summary, the results suggest that the newly created multi-epitope mRNA vaccine exhibits favorable attributes, offering novel insights and a conceptual foundation for potential progress in vaccine development.
Collapse
Affiliation(s)
- Yuejie Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yun Zhu
- Xinjiang Uygur Autonomous Region Disease Prevention Control Center, Urumqi, Xinjiang, China
| | - Min Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tingting Tian
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huidong Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kaiyu Shang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Shovon MHJ, Imtiaz M, Biswas P, Tareq MMI, Zilani MNH, Hasan M. A pan-genomic analysis based multi-epitope vaccine development by targeting Stenotrophomonas maltophilia using reverse vaccinology method: an in-silico approach. In Silico Pharmacol 2024; 12:93. [PMID: 39464855 PMCID: PMC11499521 DOI: 10.1007/s40203-024-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Antibiotic resistance in bacteria leads to high mortality rates and healthcare costs, a significant concern for public health. A colonizer of the human respiratory system, Stenotrophomonas maltophilia is frequently associated with hospital-acquired infections in individuals with cystic fibrosis, cancer, and other chronic illnesses. The importance of this study is underscored by its capacity to meet the critical demand for effective preventive strategies against this pathogen, particularly among susceptible groups of cystic fibrosis and those undergoing cancer treatment. In this study, we engineered a multi-epitope vaccine targeting S. maltophilia through genomic analysis, reverse vaccination strategies, and immunoinformatic techniques by examining a total of 81 complete genomes of S. maltophilia strains. Our investigation revealed 1945 core protein-coding genes alongside their corresponding proteomic sequences, with 191 of these genes predicted to exhibit virulence characteristics. Out of the filtered proteins, three best antigenic proteins were selected for epitope prediction while seven epitopes each from CTL, HTL, and B cell were chosen for vaccine development. The vaccine was refined and validated, showing highly antigenic and desirable physicochemical features. Molecular docking assessments revealed stable binding with TLR-4. Molecular dynamic simulation demonstrated stable dynamics with minor alterations. The originality of this investigation is rooted in the thorough techniques aimed at designing a vaccine that directly targets S. maltophilia, a microorganism of considerable clinical relevance that currently lacks an available vaccine. This study not only responds to a pressing public health crisis but also lays the groundwork for subsequent research endeavors focused on the prevention of S. maltophilia outbreaks. Further evidence from studies in mice models is needed to confirm immune protection against S. maltophilia.
Collapse
Affiliation(s)
- Md. Hasan Jafre Shovon
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Imtiaz
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md.Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
4
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Sukumaran S, Prasanna VM, Panicker LK, Nair AS, Oommen OV. Discovery of a new Daboia russelli viper venom PLA 2 inhibitor using virtual screening of pharmacophoric features of co-crystallized compound. J Biomol Struct Dyn 2024; 42:6954-6967. [PMID: 37490072 DOI: 10.1080/07391102.2023.2238072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Snake venom PLA2, a member of the group of hydrolase enzymes, has been recognized as a promising drug target for snake envenomation. In the present study, an attempt was made to identify potential inhibitors of snake venom PLA2 by employing a pharmacophore-based virtual screening, docking, and dynamics approach. A receptor-based pharmacophore model was generated based on the features of the established and bound co-crystal ligand (2-carbamoylmethyl-5-propyl-octahydro-indol-7-yl)-acetic acid in the PLA2 complex. The best pharmacophore model (ADDH) derived, consisted of four features, namely one hydrogen bond acceptor, two hydrogen bond donors, and one hydrophobic region. This common pharmacophore was then used to perform virtual screening against a drug-like diverse database, with due consideration to the Lipinski 'rule of five', so as to obtain a pool of lead molecules. The short-listed lead molecules were then subjected to docking analysis with that of the Daboia russelli viper venom PLA2 followed by a molecular simulation study for a duration of 100 ns. CAP04815700 was chosen as the best compound based on the simulation parameters, which were then taken for MM/PBSA calculation, and it was revealed that it has a similar effective inhibitory potential as that of the crystal ligand. Further, the cluster analysis also revealed the structural significance of the backbone protein after the interaction with CAP04815700. This study will continue to explore its bioactivity in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suveena Sukumaran
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
- Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Vinod Manoharan Prasanna
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Laladhas Krishna Panicker
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
- Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Achuthsankar S Nair
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Oommen V Oommen
- Centre for venom informatics, Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
- Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| |
Collapse
|
6
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
7
|
Agarwal S, Harsukhbhai Chandpa H, Naskar S, Lal Meena C, Kumar Panda A, Meena J. Dominant B cell-T cell epitopes instigated robust immune response in-silico against Scrub Typhus. Vaccine 2024; 42:3899-3915. [PMID: 38719691 DOI: 10.1016/j.vaccine.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Scrub typhus, a potentially life-threatening infectious disease, is attributed to bacteria Orientia tsutsugamushi (O. tsutsugamushi). The transmission of this illness to humans occurs through the bite of infected chiggers, which are the larval forms of mites belonging to the genus Leptotrombidium. In this research, we developed a subunit vaccine specifically designed to target outer membrane proteins. Immunodominant cytotoxic T-lymphocytes (CTLs), B- lymphocytes (BCLs), and major histocompatibility complex (MHC)- II epitopes were identified using machine learning and bioinformatics approaches. These epitopes were arranged in different combinations with the help of suitable linkers like AAY, KK, GPGPG and adjuvant (cholera toxin B) that resulted in a vaccine construct. Physiochemical properties were assessed, where the predicted solubility (0.571) was higher than threshold value. Tertiary structure was predicted using I-TASSER web server and evaluated using Ramachandran plot (94 % residues in most favourable region) and z-score (-6.04), which had shown the structure to have good stability and residue arrangement. Molecular docking with immune receptors, Toll-like receptor (TLR)-2 and -4 showed good residue interaction with 13 and 5 hydrogen bonds respectively. Molecular dynamics simulations of receptor-ligand complex provided the idea about the strong interaction having 1.524751 × 10-5 eigenvalue. Amino acid sequence of vaccine was converted to nucleotide sequence and underwent codon optimization. The optimized codon sequence was used for in-silico cloning, which provided idea about the possibility of synthesis of vaccine using E. coli as host. Overall, this study provided a promising blueprint for a scrub typhus vaccine, although experimental validation is needed for confirmation. Furthermore, it is crucial to acknowledge that while bioinformatics provides valuable insights, in-vitro and in-vivo studies are imperative for a comprehensive evaluation of vaccine candidate. Thus, the integration of computational predictions with empirical research is essential to validate the efficacy, safety, and real-world applicability of the designed vaccine against Scrub Typhus. Nevertheless, the findings are good to carry forward for in-vitro and in-vivo investigations.
Collapse
Affiliation(s)
- Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur New Delhi 110044, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
8
|
Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, Jones M, Leow CY. Insights into structural vaccinology harnessed for universal coronavirus vaccine development. Clin Exp Vaccine Res 2024; 13:202-217. [PMID: 39144127 PMCID: PMC11319108 DOI: 10.7774/cevr.2024.13.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Medicine, Asian Institute of Medical Science and Technology University, Bedong, Malaysia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
9
|
Sarvmeili J, Baghban Kohnehrouz B, Gholizadeh A, Shanehbandi D, Ofoghi H. Immunoinformatics design of a structural proteins driven multi-epitope candidate vaccine against different SARS-CoV-2 variants based on fynomer. Sci Rep 2024; 14:10297. [PMID: 38704475 PMCID: PMC11069592 DOI: 10.1038/s41598-024-61025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The ideal vaccines for combating diseases that may emerge in the future require more than simply inactivating a few pathogenic strains. This study aims to provide a peptide-based multi-epitope vaccine effective against various severe acute respiratory syndrome coronavirus 2 strains. To design the vaccine, a library of peptides from the spike, nucleocapsid, membrane, and envelope structural proteins of various strains was prepared. Then, the final vaccine structure was optimized using the fully protected epitopes and the fynomer scaffold. Using bioinformatics tools, the antigenicity, allergenicity, toxicity, physicochemical properties, population coverage, and secondary and three-dimensional structures of the vaccine candidate were evaluated. The bioinformatic analyses confirmed the high quality of the vaccine. According to further investigations, this structure is similar to native protein and there is a stable and strong interaction between vaccine and receptors. Based on molecular dynamics simulation, structural compactness and stability in binding were also observed. In addition, the immune simulation showed that the vaccine can stimulate immune responses similar to real conditions. Finally, codon optimization and in silico cloning confirmed efficient expression in Escherichia coli. In conclusion, the fynomer-based vaccine can be considered as a new style in designing and updating vaccines to protect against coronavirus disease.
Collapse
Affiliation(s)
- Javad Sarvmeili
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, 51666, Iran
| | | | - Ashraf Gholizadeh
- Department of Animal Biology, University of Tabriz, Tabriz, 51666, Iran
| | - Dariush Shanehbandi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, 33131, Iran
| |
Collapse
|
10
|
Lu Q, Wu H, Meng J, Wang J, Wu J, Liu S, Tong J, Nie J, Huang W. Multi-epitope vaccine design for hepatitis E virus based on protein ORF2 and ORF3. Front Microbiol 2024; 15:1372069. [PMID: 38577684 PMCID: PMC10991829 DOI: 10.3389/fmicb.2024.1372069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion These findings provide a foundation for future HEV vaccine studies.
Collapse
Affiliation(s)
- Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Hao Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
| | - Jing Meng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu, China
| | | | - Jiajing Wu
- Research and Development Department, Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Shuo Liu
- Changping Laboratory, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jincheng Tong
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
11
|
Uddin MJ, Niloy SI, Aktaruzzaman M, Talukder MEK, Rahman MM, Imon RR, Uddin AFMS, Amin MZ. Neuropharmacological assessment and identification of possible lead compound (apomorphine) from Hygrophila spinosa through in-vivo and in-silico approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38385482 DOI: 10.1080/07391102.2024.2317974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The aim of this research is to examine possible neurological activity of methanol, ethyl acetate, and aqueous extracts of Hygrophila spinosa and identify possible lead compounds through in silico analysis. In vivo, neuropharmacological activity was evaluated by using four distinct neuropharmacological assessment assays. Previously reported GC-MS data and earlier literature were utilized to identify the phytochemicals present in Hygrophila spinosa. Computational studies notably molecular docking and molecular dynamic simulations were conducted with responsible receptors to assess the stability of the best interacting compound. Pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity were considered to evaluate the drug likeliness properties of the identified compounds. All the in vivo results support the notion that different extracts (methanol, ethyl acetate, and aqueous) of Hygrophila spinosa have significant (*p = 0.05) sedative-hypnotic, anxiolytic, and anti-depressant activity. Among all the extracts, specifically methanol extracts of Hygrophila spinosa (MHS 400 mg/kg.b.w.) showed better sedative, anxiolytic and antidepressant activity than aqueous and ethyl acetate extracts. In silico molecular docking analysis revealed that among 53 compounds 7 compounds showed good binding affinities and one compound, namely apomorphine (CID: 6005), surprisingly showed promising binding affinity to all the receptors . An analysis of molecular dynamics simulations confirmed that apomorphine (CID: 6005) had a high level of stability at the protein binding site. Evidence suggests that Hygrophila spinosa has significant sedative, anxiolytic, and antidepressant activity. In silico analysis revealed that a particular compound (apomorphine) is responsible for this action. Further research is required in order to establish apomorphine as a drug for anxiety, depression, and sleep disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Jashim Uddin
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Clinical Pharmacy and Pharmacology. Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md Aktaruzzaman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Clinical Pharmacy and Pharmacology. Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Raihan Rahman Imon
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - A F M Shahab Uddin
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Ziaul Amin
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
12
|
Saravanan D, Mohan M. Immunoinformatics-driven approach for development of potential multi-epitope vaccine against the secreted protein FlaC of Campylobacter jejuni. J Biomol Struct Dyn 2024:1-12. [PMID: 38287490 DOI: 10.1080/07391102.2024.2308766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Campylobacter jejuni causes a leading human gastrointestinal infection which is associated with foodborne diarrhea, stomach cramping, and fever. In the recent years, numerous multidrug-resistant strains of C. jejuni has evolved and is considered in the priority pathogens category. Therefore, an increasing demand exists to develop an effective vaccine against Campylobacteriosis. The T cell and B cell epitopes from the FlaC protein were predicted using comprehensive immunoinformatics tools. The predicted epitopes were chosen based on their antigenicity, allergenicity, and toxicity profiles. Using the bioinformatics approach various physicochemical properties of the constructed vaccine were determined. The molecular docking analysis of the vaccine with the TLRs demonstrated that TLR5 has a higher binding affinity of -1159.0 kcal/mol. Molecular dynamics simulation has confirmed the stable association of the vaccine with TLR5. The immune response of the constructed vaccine was validated using immunostimulation. Based on this study, we recommend the formulation of a multi-epitope vaccine as a promising agent to effectively combat the dreadful campylobacteriosis infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepak Saravanan
- School of Interdisciplinary Design and Innovation, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Tamil Nadu, India
| | - Monisha Mohan
- School of Interdisciplinary Design and Innovation, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
13
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
14
|
Islam MR, Osman OI, Hassan WMI. Identifying novel therapeutic inhibitors to target FMS-like tyrosine kinase-3 (FLT3) against acute myeloid leukemia: a molecular docking, molecular dynamics, and DFT study. J Biomol Struct Dyn 2024; 42:82-100. [PMID: 36995071 DOI: 10.1080/07391102.2023.2192798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Around 30% of acute myeloid leukemia (AML) patients have triggering mutations in Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3), which has been suggested as a possible therapeutic candidate for AML therapy. Many tyrosine kinase inhibitors are available and have a wide variety of applications in the treatment of cancer by inhibiting subsequent steps of cell proliferation. Therefore, our study aims to identify effective antileukemic agents against FLT3 gene. Initially, well-known antileukemic drug candidates have been chosen to generate a structure-based pharmacophore model to assist the virtual screening of 217,77,093 compounds from the Zinc database. The final hits compounds were retrieved and evaluated by docking against the target protein, where the top four compounds have been selected for the analysis of ADMET. Based on the density functional theory (DFT), the geometry optimization, frontier molecular orbital (FMO), HOMO-LUMO, and global reactivity descriptor values have been evaluated that confirming a satisfactory profile and reactivity order for the selected candidates. In comparison to control compounds, the docking results revealed that the four compounds had substantial binding energies (-11.1 to -11.5 kcal/mol) with FLT3. The physicochemical and ADMET (adsorption, distribution, metabolism, excretion, toxicity) prediction results corresponded to the bioactive and safe candidates. Molecular dynamics (MD) confirmed the better binding affinity and stability compared to gilteritinib as a potential FLT3 inhibitor. In this study, a computational approach has been performed that found a better docking and dynamics score against target proteins, indicating potent and safe antileukemic agents, furthermore in-vivo and in-vitro investigations are recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Advanced Biological Invention Centre (Bioinventics), Rajshahi, Bangladesh
| | - Osman I Osman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Walid M I Hassan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Evbuomwan IO, Alejolowo OO, Elebiyo TC, Nwonuma CO, Ojo OA, Edosomwan EU, Chikwendu JI, Elosiuba NV, Akulue JC, Dogunro FA, Rotimi DE, Osemwegie OO, Ojo AB, Ademowo OG, Adeyemi OS, Oluba OM. In silico modeling revealed phytomolecules derived from Cymbopogon citratus (DC.) leaf extract as promising candidates for malaria therapy. J Biomol Struct Dyn 2024; 42:101-118. [PMID: 36974933 DOI: 10.1080/07391102.2023.2192799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | - Charles Obiora Nwonuma
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Evelyn Uwa Edosomwan
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | | | | | | | | | - Damilare Emmanuel Rotimi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Drug Research Laboratory, Institute of Advanced Medical Research and Training (IMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Olarewaju Michael Oluba
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
16
|
Krishnan K A, Valavi SG, Joy A. Identification of Novel EGFR Inhibitors for the Targeted Therapy of Colorectal Cancer Using Pharmacophore Modelling, Docking, Molecular Dynamic Simulation and Biological Activity Prediction. Anticancer Agents Med Chem 2024; 24:263-279. [PMID: 38173208 DOI: 10.2174/0118715206275566231206094645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is considered the second deadliest cancer in the world. One of the reasons for the occurrence of this cancer is the deregulation of the Epidermal Growth Factor Receptor (EGFR), which plays a critical role in regulating cell division, persistence, differentiation, and migration. The overexpression of the EGFR protein leads to its dysregulation and causes CRC. OBJECTIVES Hence, this work aims to identify and validate novel EGFR inhibitors for the treatment of colorectal cancer employing various computer aided techniques such as pharmacophore modeling, docking, molecular dynamic simulation and Quantitative Structure-Activity Relationship (QSAR) analysis. METHODS In this work, a shared-featured ligand-based pharmacophore model was generated using the known inhibitors of EGFR. The best model was validated and screened against ZincPharmer and Maybridge databases, and 143 hits were obtained. Pharmacokinetic and toxicological properties of these hits were studied, and the acceptable ligands were docked against EGFR. The best five protein-ligand complexes with binding energy less than -5 kcal/mol were selected. The molecular dynamic simulation studies of these complexes were conducted for 100 nanoseconds (ns), and the results were analyzed. The biological activity of this ligand was calculated using QSAR analysis. RESULTS The best complex with Root Mean Square Deviation (RMSD) 3.429 Å and Radius of Gyration (RoG) 20.181 Å was selected. The Root Mean Square Fluctuations (RMSF) results were also found to be satisfactory. The biological activity of this ligand was found to be 1.38 μM. CONCLUSION This work hereby proposes the ligand 2-((1,6-dimethyl-4-oxo-1,4-dihydropyridin-3-yl)oxy)-N- (1H-indol-4-yl)acetamide as a potential EGFR inhibitor for the treatment of colorectal cancer. The wet lab analysis must be conducted, however, to confirm this hypothesis.
Collapse
Affiliation(s)
- Amrutha Krishnan K
- Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University, Kodakara, Thrissur, Kerala, India
| | - Sudha George Valavi
- Department of Applied Science and Humanities, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University, Kodakara, Thrissur, Kerala, India
| | - Amitha Joy
- Department of Biotechnology, Sahrdaya College of Engineering and Technology, Affiliated to APJ Abdul Kalam Technological University, Kodakara, Thrissur, Kerala, India
| |
Collapse
|
17
|
Tamanna T, Rahman MS. Leveraging immunoinformatics for developing a multi-epitope subunit vaccine against Helicobacter pylori and Fusobacterium nucleatum. J Biomol Struct Dyn 2023:1-14. [PMID: 38116749 DOI: 10.1080/07391102.2023.2292295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Gastric ulcers caused by Helicobacter pylori and Fusobacterium nucleatum remain a significant global health concern without an established vaccine. In this study, we utilized immunoinformatics methods to design a multi-epitope vaccine targeting these pathogens. Outer membrane proteins from H. pylori and F. nucleatum were scrutinized to identify high antigenic T-cell and B-cell epitopes. The resulting vaccine comprised carefully analyzed and evaluated epitopes, including cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocytes epitopes. This vaccine exhibited notable antigenicity, suitable immunogenicity, and demonstrated non-allergenicity and non-toxicity. It displayed favorable physiochemical characteristics and high solubility. In interaction studies, the vaccine exhibited robust binding to toll-like receptor 4 (TLR4). Molecular dynamic simulations revealed cohesive structural integrity and stable attachment. Codon adaptation utilizing Escherichia coli K12 host yielded a vaccine with elevated Codon Adaptation Index (CAI) and optimal GC content. In silico cloning into the pET28+(a) vector demonstrated efficient expression. Immune simulations indicated the vaccine's ability to initiate immune responses in humans, mirroring real-life scenarios. Based on these comprehensive findings, we propose that our developed vaccine has the potential to confer robust immunity against H. pylori and F. nucleatum infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanjin Tamanna
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
18
|
Adelusi TI, Ojo TO, Bolaji OQ, Oyewole MP, Olaoba OT, Oladipo EK. Predicting Plasmodium falciparum kinase inhibitors from antimalarial medicinal herbs using computational modeling approach. In Silico Pharmacol 2023; 12:4. [PMID: 38130691 PMCID: PMC10730500 DOI: 10.1007/s40203-023-00175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Malaria remains a significant public health challenge, with resistance to available drugs necessitating the development of novel therapies targeting invasion-dependent proteins. Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK-1) is essential for host erythrocyte invasion and parasite asexual development. This study screened a library of 490 compounds using computational methods to identify potential PfCDPK-1 inhibitors. Three compounds; 17-hydroxyazadiradione, Picracin, and Epicatechin-gallate derived from known antimalarial botanicals, showed potent inhibitory effects on PfCDPK-1. These compounds exhibited better binding affinities (-8.8, -9.1, -9.3 kCal/mol respectively), pharmacokinetics, and physicochemical properties than the purported inhibitory standard of PfCDPK-1, Purfalcamine. Molecular dynamics simulations (50 ns) and molecular mechanics analyses confirmed the stability and binding rigidity of these compounds at the active pocket of PfCDPK-1. The results suggest that these compounds are promising pharmacological targets with potential therapeutic effects for malaria treatment/management without undesirable side effects. Therefore, this study provides new insights into the development of effective antimalarial agents targeting invasion-dependent proteins, which could help combat the global malaria burden. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00175-z.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Taiwo Ooreoluwa Ojo
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
| | - Olawale Quadri Bolaji
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Moyosoluwa Precious Oyewole
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B 210214, Ogbomoso, Oyo State Nigeria
| | - Olamide Tosin Olaoba
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211 USA
| | - Elijah Kolawole Oladipo
- Genomics unit, Helix Biogen Institute, P.M.B 212102, Ogbomoso, Oyo State Nigeria
- Laboratory of Molecular Biology, Bioinformatics and Immunology, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
| |
Collapse
|
19
|
Kumari S, Kessel A, Singhal D, Kaur G, Bern D, Lemay-St-Denis C, Singh J, Jain S. Computational identification of a multi-peptide vaccine candidate in E2 glycoprotein against diverse Hepatitis C virus genotypes. J Biomol Struct Dyn 2023; 41:11044-11061. [PMID: 37194293 DOI: 10.1080/07391102.2023.2212777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/11/2022] [Indexed: 05/18/2023]
Abstract
Hepatitis C Virus (HCV) is estimated to affect nearly 180 million people worldwide, culminating in ∼0.7 million yearly casualties. However, a safe vaccine against HCV is not yet available. This study endeavored to identify a multi-genotypic, multi-epitopic, safe, and globally competent HCV vaccine candidate. We employed a consensus epitope prediction strategy to identify multi-epitopic peptides in all known envelope glycoprotein (E2) sequences, belonging to diverse HCV genotypes. The obtained peptides were screened for toxicity, allergenicity, autoimmunity and antigenicity, resulting in two favorable peptides viz., P2 (VYCFTPSPVVVG) and P3 (YRLWHYPCTV). Evolutionary conservation analysis indicated that P2 and P3 are highly conserved, supporting their use as part of a designed multi-genotypic vaccine. Population coverage analysis revealed that P2 and P3 are likely to be presented by >89% Human Leukocyte Antigen (HLA) molecules from six geographical regions. Indeed, molecular docking predicted the physical binding of P2 and P3 to various representative HLAs. We designed a vaccine construct using these peptides and assessed its binding to toll-like receptor 4 (TLR-4) by molecular docking and simulation. Subsequent analysis by energy-based and machine learning tools predicted high binding affinity and pinpointed the key binding residues (i.e. hotspots) in P2 and P3. Also, a favorable immunogenic profile of the construct was predicted by immune simulations. We encourage the scientific community to validate our vaccine construct in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shweta Kumari
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - David Bern
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Claudèle Lemay-St-Denis
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | - Jasdeep Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
Mohapatra S, Kumar S, Kumar S, Singh AK, Nayak B. Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. Virusdisease 2023; 34:456-482. [PMID: 38046066 PMCID: PMC10686954 DOI: 10.1007/s13337-023-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00852-9.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Santosh Kumar
- RNA Biology Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Shashank Kumar
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Atul Kumar Singh
- Molecular Signalling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
21
|
Oladipo EK, Ojo TO, Olufemi SE, Irewolede BA, Adediran DA, Abiala AG, Hezekiah OS, Idowu AF, Oladeji YG, Ikuomola MO, Olayinka AT, Akanbi GO, Idowu UA, Olubodun OA, Odunlami FD, Ogunniran JA, Akinro OP, Adegoke HM, Folakanmi EO, Usman TA, Oladokun EF, Oluwasanya GJ, Awobiyi HO, Oluwasegun JA, Akintibubo SA, Jimah EM. Proteome based analysis of circulating SARS-CoV-2 variants: approach to a universal vaccine candidate. Genes Genomics 2023; 45:1489-1508. [PMID: 37548884 DOI: 10.1007/s13258-023-01426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
The discovery of the first infectious variant in Wuhan, China, in December 2019, has posed concerns over global health due to the spread of COVID-19 and subsequent variants. While the majority of patients experience flu-like symptoms such as cold and fever, a small percentage, particularly those with compromised immune systems, progress from mild illness to fatality. COVID-19 is caused by a RNA virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach involved utilizing immunoinformatic to identify vaccine candidates with multiple epitopes and ligand-binding regions in reported SARS-CoV-2 variants. Through analysis of the spike glycoprotein, we identified dominant epitopes for T-cells and B-cells, resulting in a vaccine construct containing two helper T-cell epitopes, six cytotoxic T-cell epitopes, and four linear B-cell epitopes. Prior to conjugation with adjuvants and linkers, all epitopes were evaluated for antigenicity, toxicity, and allergenicity. Additionally, we assessed the vaccine Toll-Like Receptors complex (2, 3, and 4). The vaccine construct demonstrated antigenicity, non-toxicity, and non-allergenicity, thereby enabling the host to generate antibodies with favorable physicochemical characteristics. Furthermore, the 3D structure of the B-cell construct exhibited a ProSA-web z-score plot with a value of -1.71, indicating the reliability of the designed structure. The Ramachandran plot analysis revealed that 99.6% of the amino acid residues in the vaccine subunit were located in the high favored observation region, further establishing its strong candidacy as a vaccination option.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Informatics, Adeleke University, Ede, Osun State, Nigeria.
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria.
| | - Taiwo Ooreoluwa Ojo
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Seun Elijah Olufemi
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Daniel Adewole Adediran
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Asegunloluwa Grace Abiala
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwaseun Samuel Hezekiah
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Akindele Felix Idowu
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Yinmi Gabriel Oladeji
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Microbiology, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Mary Omotoyinbo Ikuomola
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Adenike Titilayo Olayinka
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Gideon Oluwamayowa Akanbi
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Usman Abiodun Idowu
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Odunola Abimbola Olubodun
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho Daniel Odunlami
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - James Akinwumi Ogunniran
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Omodamola Paulina Akinro
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Hadijat Motunrayo Adegoke
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Elizabeth Oluwatoyin Folakanmi
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Elizabeth Folakemi Oladokun
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | | | - Jerry Ayobami Oluwasegun
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Samuel Adebowale Akintibubo
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria
- Department of Pure and Applied Biology, Microbiology Unit, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | |
Collapse
|
22
|
Ramprasadh SV, Rajakumar S, Srinivasan S, Susha D, Sharma S, Chourasiya R. Computer-Aided Multi-Epitope Based Vaccine Design Against Monkeypox Virus Surface Protein A30L: An Immunoinformatics Approach. Protein J 2023; 42:645-663. [PMID: 37615828 DOI: 10.1007/s10930-023-10150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Monkeypox, a viral zoonotic disease resembling smallpox, has emerged as a significant national epidemic primarily in Africa. Nevertheless, the recent global dissemination of this pathogen has engendered apprehension regarding its capacity to metamorphose into a sweeping pandemic. To effectively combat this menace, a multi-epitope vaccine has been meticulously engineered with the specific aim of targeting the cell envelope protein of Monkeypox virus (MPXV), thereby stimulating a potent immunological response while mitigating untoward effects. This new vaccine uses T-cell and B-cell epitopes from a highly antigenic, non-allergenic, non-toxic, conserved, and non-homologous A30L protein to provide protection against the virus. In order to ascertain the vaccine design with the utmost efficacy, protein-protein docking methodologies were employed to anticipate the intricate interactions with Toll-like receptors (TLR) 2, 3, 4, 6, and 8. This meticulous approach led the researchers to discern an optimal vaccine architecture, bolstered by affirmative prognostications derived from both molecular dynamics (MD) simulations and immune simulations. The current research findings indicate that the peptides ATHAAFEYSK, FFIVVATAAV, and MNSLSIFFV exhibited antigenic properties and were determined to be non-allergenic and non-toxic. Through the utilization of codon optimization and in-silico cloning techniques, our investigation revealed that the prospective vaccine exhibited a remarkable expression level within Escherichia coli. Moreover, upon conducting immune simulations, we observed the induction of a robust immune response characterized by elevated levels of both B-cell and T-cell mediated immunity. Moreover, as the initial prediction with in-silico techniques has yielded promising results these epitope-based vaccines can be recommended to in vitro and in silico studies to validate their immunogenic properties.
Collapse
Affiliation(s)
- S V Ramprasadh
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | | | - S Srinivasan
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - D Susha
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, 560043, India.
| | | |
Collapse
|
23
|
Zafar I, Safder A, Imran Afridi H, Riaz S, -ur-Rehman R, Unar A, Un Nisa F, Gaafar ARZ, Bourhia M, Wondmie GF, Sharma R, Kumar D. In silico and in vitro study of bioactive compounds of Nigella sativa for targeting neuropilins in breast cancer. Front Chem 2023; 11:1273149. [PMID: 37885828 PMCID: PMC10598785 DOI: 10.3389/fchem.2023.1273149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction: Breast cancer poses a significant global challenge, prompting researchers to explore novel approaches for potential treatments. Material and Methods: For in vitro study we used thin layer chromatography (TAC) for phytochemical screening, total antioxidant capacity (TLC) assay for antioxidant capacity, and hemolytic activity test for toxicity of Neuropilins (NRPs). We performed bioinformatic analyses to predict protein structures, molecular docking, pharmacophore modeling, and virtual screening to reveal interactions with oncogenes. We conducted 200 ns Molecular Dynamics (MD) simulations and MMGBSA calculations to assess the complex dynamics and stability. Results: We identified phytochemical constituents in Nigella sativa leaves, including tannins, saponins, steroids, and cardiac glycosides, while phlobatannins and terpenoids were absent. The leaves contained 9.4% ± 0.04% alkaloids and 1.9% ± 0.05% saponins. Methanol extract exhibited the highest yield and antioxidant capacity, with Total Flavonoid Content at 127.51 ± 0.76 mg/100 g and Total Phenolic Content at 134.39 ± 0.589 mg GAE/100 g. Hemolysis testing showed varying degrees of hemolysis for different extracts. In-silico analysis indicated stable Neuropilin complexes with key signaling pathways relevant for anti-cancer therapy. Molecular docking scores at different possesses (0, C-50, C -80, C-120,C -150, C -200 ns) revealed strong hydrogen bonding in the complexes and showed -12.9, -11.6, and -11.2 binding Affinities (kcal/mol) to support their stability. Our MD simulations analysis at 200ns confirmed the stability of Neuropilin complexes with the signaling pathways protein PI3K. The calculated binding free energies using MMGBSA provided valuable quantitative information on ligand potency on different time steps. These findings highlight the potential health benefits of N. sativa leaves and their possible role in anti-cancer treatments targeting angiogenesis. Conclusion: Nigella sativa leaves have shown significant medical potential due to their bioactive compounds, which exhibit strong properties in supporting organogenic processes related to cancer. Furthermore, studies have highlighted the promising role of neuropilins in anticancer treatment, demonstrating stable interactions and potential as targeted therapy specifically for breast cancer.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Lahore, Pakistan
| | - Arfa Safder
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab, Pakistan
| | - Hassan Imran Afridi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Sania Riaz
- Faculty of Health and Life Sciences, Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Rizwan -ur-Rehman
- Faculty of Health and Life Sciences, Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Fakhar Un Nisa
- Depatment of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | | | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Dileep Kumar
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, India
- Centre for Advanced Research in Pharmaceutical Sciences, Poona College of Pharmacy, Pune, India
| |
Collapse
|
24
|
Zhao X, Wang X, Yuan M, Zhang X, Yang X, Guan X, Li S, Ma J, Qiu HJ, Li Y. Identification of two novel T cell epitopes on the E2 protein of classical swine fever virus C-strain. Vet Microbiol 2023; 284:109814. [PMID: 37356277 DOI: 10.1016/j.vetmic.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
C-strain, also known as the HCLV strain, is a well-known live attenuated vaccine against classical swine fever (CSF), a devastating disease caused by classical swine fever virus (CSFV). Vaccination with C-strain induces a rapid onset of protection, which is associated with virus-specific gamma interferon (IFN-γ)-secreting CD8+ T cell responses. The E2 protein of CSFV is a major protective antigen. However, the T cell epitopes on the E2 protein remain largely unknown. In this study, eight overlapping nonapeptides of the E2 protein were predicted and synthesized to screen for potential T cell epitopes on the CSFV C-strain E2 protein. Molecular docking was performed on the candidate epitopes with the swine leukocyte antigen-1*0401. The analysis obtained two highly conserved T cell epitopes, 90STEEMGDDF98 and 331ATDRHSDYF339, which were further identified by enzyme-linked immunospot assay. Interestingly, the mutants deleting or substituting the epitopes are nonviable. Further analysis demonstrated that 90STEEMGDDF98 is crucial for the E2 homodimerization, while CSFV infection is significantly inhibited by the 331ATDRHSDYF339 peptide treatment. The two novel T cell epitopes can be used to design new vaccines that are able to provide rapid-onset protection.
Collapse
Affiliation(s)
- Xiaotian Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiao Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Mengqi Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jifei Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China.
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
25
|
Mishra SK, Priya P, Rai GP, Haque R, Shanker A. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2. Comput Biol Med 2023; 163:107233. [PMID: 37422941 DOI: 10.1016/j.compbiomed.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/03/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
In the recent past several vaccines were developed to combat the COVID-19 disease. Unfortunately, the protective efficacy of the current vaccines has been reduced due to the high mutation rate in SARS-CoV-2. Here, we successfully implemented a coevolution based immunoinformatics approach to design an epitope-based peptide vaccine considering variability in spike protein of SARS-CoV-2. The spike glycoprotein was investigated for B- and T-cell epitope prediction. Identified T-cell epitopes were mapped on previously reported coevolving amino acids in the spike protein to introduce mutation. The non-mutated and mutated vaccine components were constructed by selecting epitopes showing overlapping with the predicted B-cell epitopes and highest antigenicity. Selected epitopes were linked with the help of a linker to construct a single vaccine component. Non-mutated and mutated vaccine component sequences were modelled and validated. The in-silico expression level of the vaccine constructs (non-mutated and mutated) in E. coli K12 shows promising results. The molecular docking analysis of vaccine components with toll-like receptor 5 (TLR5) demonstrated strong binding affinity. The time series calculations including root mean square deviation (RMSD), radius of gyration (RGYR), and energy of the system over 100 ns trajectory obtained from all atom molecular dynamics simulation showed stability of the system. The combined coevolutionary and immunoinformatics approach used in this study will certainly help to design an effective peptide vaccine that may work against different strains of SARS-CoV-2. Moreover, the strategy used in this study can be implemented on other pathogens.
Collapse
Affiliation(s)
- Saurav Kumar Mishra
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Prerna Priya
- Department of Botany, Purnea Mahila College, Purnia, Bihar, India
| | - Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
26
|
Li L, Zhao Z, Yang X, Su Z, Li W, Chen S, Wang L, Sun T, Du C, Li Z, Yang Z, Li M, Wang T, Wang Y, Fan Y, Wang H, Zhang J. A Newly Identified Spike Protein Targeted Linear B-Cell Epitope Based Dissolvable Microneedle Array Successfully Eliciting Neutralizing Activities against SARS-CoV-2 Wild-Type Strain in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207474. [PMID: 37162232 PMCID: PMC10369230 DOI: 10.1002/advs.202207474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Vaccination is a cost-effective medical intervention. Inactivated whole virusor large protein fragments-based severe acute respiratory syndrome coronavirus (SARS-CoV-2) vaccines have high unnecessary antigenic load to induce allergenicity and/orreactogenicity, which can be avoided by peptide vaccines of short peptide fragments that may induce highly targeted immune response. However, epitope identification and peptide delivery remain the major obstacles in developing peptide vaccines. Here, a multi-source data integrated linear B-cell epitope screening strategy is presented and a linear B-cell epitope enriched hotspot region is identified in Spike protein, from which a monomeric peptide vaccine (Epitope25) is developed and applied to subcutaneously immunize wildtype BALB/c mice. Indirect ELISA assay reveals specific and dose-dependent binding between Epitope25 and serum IgG antibodies from immunized mice. The neutralizing activity of sera from vaccinated mice is validated by pseudo and live SARS-CoV-2 wild-type strain neutralization assays. Then a dissolvable microneedle array (DMNA) is developed to pain-freely deliver Epitope25. Compared with intramuscular injection, DMNA and subcutaneous injection elicit neutralizing activities against SARS-CoV-2 wild-type strain as demonstrated by live SARS-CoV-2 virus neutralization assay. No obvious damages are found in major organs of immunized mice. This study may lay the foundation for developing linear B-cell epitope-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Zhongyi Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Wendong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Chen Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Ziyi Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Zeqian Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Min Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Tiecheng Wang
- Institute of Military VeterinaryAcademy of Military Medical Sciences666 West Liuying RoadChangchunJilin130122P. R. China
| | - Ying Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| | - Hui Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Centre for Biomedical EngineeringSchool of Engineering Medicine and School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083P. R. China
| |
Collapse
|
27
|
Imon RR, Samad A, Alam R, Alsaiari AA, Talukder MEK, Almehmadi M, Ahammad F, Mohammad F. Computational formulation of a multiepitope vaccine unveils an exceptional prophylactic candidate against Merkel cell polyomavirus. Front Immunol 2023; 14:1160260. [PMID: 37441076 PMCID: PMC10333698 DOI: 10.3389/fimmu.2023.1160260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine skin malignancy caused by human Merkel cell polyomavirus (MCV), leading to the most aggressive skin cancer in humans. MCV has been identified in approximately 43%-100% of MCC cases, contributing to the highly aggressive nature of primary cutaneous carcinoma and leading to a notable mortality rate. Currently, no existing vaccines or drug candidates have shown efficacy in addressing the ailment caused by this specific pathogen. Therefore, this study aimed to design a novel multiepitope vaccine candidate against the virus using integrated immunoinformatics and vaccinomics approaches. Initially, the highest antigenic, immunogenic, and non-allergenic epitopes of cytotoxic T lymphocytes, helper T lymphocytes, and linear B lymphocytes corresponding to the virus whole protein sequences were identified and retrieved for vaccine construction. Subsequently, the selected epitopes were linked with appropriate linkers and added an adjuvant in front of the construct to enhance the immunogenicity of the vaccine candidates. Additionally, molecular docking and dynamics simulations identified strong and stable binding interactions between vaccine candidates and human Toll-like receptor 4. Furthermore, computer-aided immune simulation found the real-life-like immune response of vaccine candidates upon administration to the human body. Finally, codon optimization was conducted on the vaccine candidates to facilitate the in silico cloning of the vaccine into the pET28+(a) cloning vector. In conclusion, the vaccine candidate developed in this study is anticipated to augment the immune response in humans and effectively combat the virus. Nevertheless, it is imperative to conduct in vitro and in vivo assays to evaluate the efficacy of these vaccine candidates thoroughly. These evaluations will provide critical insights into the vaccine's effectiveness and potential for further development.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Ahad Amer Alsaiari
- Clinical Laboratories Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mazen Almehmadi
- Clinical Laboratories Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
28
|
Zhang Y, Zhao G, Xiong Y, Li F, Chen Y, Cheng Y, Ma J, Wang H, Yan Y, Wang Z, Sun J. Development of a Universal Multi-Epitope Vaccine Candidate against Streptococcus suis Infections Using Immunoinformatics Approaches. Vet Sci 2023; 10:383. [PMID: 37368769 DOI: 10.3390/vetsci10060383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Streptococcus suis is a significant zoonotic pathogen that is a great threat not only to the swine industry but also to human health, causing arthritis, meningitis, and even streptococcal toxic shock-like syndrome. Owing to its many serotypes and high geographic variability, an efficacious cross-protective S. suis vaccine is not readily available. Therefore, this study aimed to design a universal multi-epitope vaccine (MVHP6) that involved three highly immunogenic proteins of S. suis, namely, the surface antigen containing a glycosaminoglycan binding domain (HP0197), endopeptidase (PepO), and 6-phosphogluconate dehydrogenase (6PGD). Forecasted T-cell and B-cell epitopes with high antigenic properties and a suitable adjuvant were linked to construct a multi-epitope vaccine. In silico analysis showed that the selected epitopes were conserved in highly susceptible serotypes for humans. Thereafter, we evaluated the different parameters of MVHP6 and showed that MVHP6 was highly antigenic, non-toxic, and non-allergenic. To verify whether the vaccine could display appropriate epitopes and maintain high stability, the MVHP6 tertiary structure was modeled, refined, and validated. Molecular docking studies revealed a strong binding interaction between the vaccine and the toll-like receptor (TLR4), whereas molecular dynamics simulations demonstrated the vaccine's compatibility, binding stability, and structural compactness. Moreover, the in silico analysis showed that MVHP6 could evoke strong immune responses and enable worldwide population coverage. Moreover, MVHP6 was cloned into the pET28a (+) vector in silico to ensure the credibility, validation, and proper expression of the vaccine construct. The findings suggested that the proposed multi-epitope vaccine can provide cross-protection against S. suis infections.
Collapse
Affiliation(s)
- Yumin Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Guoqing Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yangjing Xiong
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Feiyu Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yifan Chen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Henan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| |
Collapse
|
29
|
Dey D, Hossain R, Biswas P, Paul P, Islam MA, Ema TI, Gain BK, Hasan MM, Bibi S, Islam MT, Rahman MA, Kim B. Amentoflavone derivatives significantly act towards the main protease (3CL PRO/M PRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol Divers 2023; 27:857-871. [PMID: 35639226 PMCID: PMC9153225 DOI: 10.1007/s11030-022-10459-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2 is the foremost culprit of the novel coronavirus disease 2019 (nCoV-19 and/or simply COVID-19) and poses a threat to the continued life of humans on the planet and create pandemic issue globally. The 3-chymotrypsin-like protease (MPRO or 3CLPRO) is the crucial protease enzyme of SARS-CoV-2, which directly involves the processing and release of translated non-structural proteins (nsps), and therefore involves the development of virus pathogenesis along with outbreak the forecasting of COVID-19 symptoms. Moreover, SARS-CoV-2 infections can be inhibited by plant-derived chemicals like amentoflavone derivatives, which could be used to develop an anti-COVID-19 drug. Our research study is designed to conduct an in silico analysis on derivatives of amentoflavone (isoginkgetin, putraflavone, 4''''''-methylamentoflavone, bilobetin, ginkgetin, sotetsuflavone, sequoiaflavone, heveaflavone, kayaflavone, and sciadopitysin) for targeting the non-structural protein of SARS-CoV-2, and subsequently further validate to confirm their antiviral ability. To conduct all the in silico experiments with the derivatives of amentoflavone against the MPRO protein, both computerized tools and online servers were applied; notably the software used is UCSF Chimera (version 1.14), PyRx, PyMoL, BIOVIA Discovery Studio tool (version 4.5), YASARA (dynamics simulator), and Cytoscape. Besides, as part of the online tools, the SwissDME and pKCSM were employed. The research study was proposed to implement molecular docking investigations utilizing compounds that were found to be effective against the viral primary protease (MPRO). MPRO protein interacted strongly with 10 amentoflavone derivatives. Every time, amentoflavone compounds outperformed the FDA-approved antiviral medicine that is currently underused in COVID-19 in terms of binding affinity (- 8.9, - 9.4, - 9.7, - 9.1, - 9.3, - 9.0, - 9.7, - 9.3, - 8.8, and - 9.0 kcal/mol, respectively). The best-selected derivatives of amentoflavone also possessed potential results in 100 ns molecular dynamic simulation (MDS) validation. It is conceivable that based on our in silico research these selected amentoflavone derivatives more precisely 4''''''-methylamentoflavone, ginkgetin, and sequoiaflavone have potential for serving as promising lead drugs against SARS-CoV-2 infection. In consequence, it is recommended that additional in vitro as well as in vivo research studies have to be conducted to support the conclusions of this current research study.
Collapse
Affiliation(s)
- Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh.
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Md Aminul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Bibhuti Kumar Gain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Md Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
30
|
Naveed M, Waseem M, Aziz T, Hassan JU, Makhdoom SI, Ali U, Alharbi M, Alsahammari A. Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. Biomedicines 2023; 11:biomedicines11041039. [PMID: 37189657 DOI: 10.3390/biomedicines11041039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of antibiotic-resistant microorganisms is a significant concern in global health. Antibiotic resistance is attributed to various virulent factors and genetic elements. This study investigated the virulence factors of Staphylococcus aureus to create an mRNA-based vaccine that could help prevent antibiotic resistance. Distinct strains of the bacteria were selected for molecular identification of virulence genes, such as spa, fmhA, lukD, and hla-D, which were performed utilizing PCR techniques. DNA extraction from samples of Staphylococcus aureus was conducted using the Cetyl Trimethyl Ammonium Bromide (CTAB) method, which was confirmed and visualized using a gel doc; 16S rRNA was utilized to identify the bacterial strains, and primers of spa, lukD, fmhA, and hla-D genes were employed to identify the specific genes. Sequencing was carried out at Applied Bioscience International (ABI) in Malaysia. Phylogenetic analysis and alignment of the strains were subsequently constructed. We also performed an in silico analysis of the spa, fmhA, lukD, and hla-D genes to generate an antigen-specific vaccine. The virulence genes were translated into proteins, and a chimera was created using various linkers. The mRNA vaccine candidate was produced utilizing 18 epitopes, linkers, and an adjuvant, known as RpfE, to target the immune system. Testing determined that this design covered 90% of the population conservancy. An in silico immunological vaccine simulation was conducted to verify the hypothesis, including validating and predicting secondary and tertiary structures and molecular dynamics simulations to evaluate the vaccine’s long-term viability. This vaccine design may be further evaluated through in vivo and in vitro testing to assess its efficacy.
Collapse
|
31
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
32
|
Motamedi H, Ari MM, Shahlaei M, Moradi S, Farhadikia P, Alvandi A, Abiri R. Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinformatics 2023; 24:65. [PMID: 36829112 PMCID: PMC9951438 DOI: 10.1186/s12859-023-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND It seems that several members of intestinal gut microbiota like Streptococcus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and immunoinformatics approaches to design a potential epitope-based multi-epitope vaccine to prevent CRC with optimal population coverage. METHODS In this study, ten amino acid sequences of CRC-related pathogens were retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all sequences were performed using web servers. A total of three linkers, AAY, GPGPG, and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final construct was subjected to disulfide engineering, molecular docking, immune simulation and codon adaptation to design an effective vaccine production strategy. RESULTS A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The predicted epitopes were joined by appropriate linkers because they play an important role in producing an extended conformation and protein folding. The final multi-epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, which revealed stable and strong binding interactions. Immunity simulation of the vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T cells and INF-γ. CONCLUSION Finally, the results showed that the designed multi-epitope vaccine could serve as an excellent prophylactic candidate against CRC-associated pathogens, but in vitro and animal studies are needed to justify our findings for its use as a possible preventive measure.
Collapse
Affiliation(s)
- Hamid Motamedi
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- grid.411746.10000 0004 4911 7066Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- grid.412112.50000 0001 2012 5829Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Farhadikia
- grid.412112.50000 0001 2012 5829Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Alvandi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Technology Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Fertility and Infertility Research Center, Health Technology Institute,, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Alam R, Samad A, Ahammad F, Nur SM, Alsaiari AA, Imon RR, Talukder MEK, Nain Z, Rahman MM, Mohammad F, Karpiński TM. In silico formulation of a next-generation multiepitope vaccine for use as a prophylactic candidate against Crimean-Congo hemorrhagic fever. BMC Med 2023; 21:36. [PMID: 36726141 PMCID: PMC9891764 DOI: 10.1186/s12916-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches. METHODS The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus. RESULTS After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans. CONCLUSIONS Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.
Collapse
Affiliation(s)
- Rahat Alam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh.,Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), 34110, Doha, Qatar
| | - Suza Mohammad Nur
- Department of Biochemistry, School of Medicine Case, Western Reserve University, Cleveland, OH, 44106, USA
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif, 21944, Saudi Arabia
| | - Raihan Rahman Imon
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Zulkar Nain
- School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), 34110, Doha, Qatar.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland.
| |
Collapse
|
34
|
Mohammadzadeh Hosseini Moghri SAH, Mahmoodi Chalbatani G, Ranjbar M, Raposo C, Abbasian A. CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. J Biomol Struct Dyn 2023; 41:1028-1040. [PMID: 36617427 DOI: 10.1080/07391102.2021.2020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GB) is a common primary malignancy of the central nervous system, and one of the highly lethal brain tumors. GB cells can promote therapeutic resistance and tumor angiogenesis. The CD171 is an adhesion molecule in neuronal cells that is expressed in glioma cells as a regulator of brain development during the embryonic period. CD171 is one of the immunoglobulin-like CAMs (cell adhesion molecules) families that can be associated with prognosis in a variety of human tumors. The multi-epitope peptide vaccines are based on synthetic peptides with a combination of both B-cell epitopes and T-cell epitopes, which can induce specific humoral or cellular immune responses. Moreover, Cholera toxin subunit B (CTB), a novel TLR agonist was utilized in the final construct to polarize CD4+ T cells toward T-helper 1 to induce strong cytotoxic T lymphocytes (CTL) responses. In the present study, several immune-informatics tools were used for analyzing the CD171 sequence and studying the important characteristics of a designed vaccine. The results included molecular docking, molecular dynamics simulation, immune response simulation, prediction and validation of the secondary and tertiary structure, physicochemical properties, solubility, conservancy, toxicity as well as antigenicity and allergenicity of the promising candidate for a vaccine against CD171. The immuno-informatic analyze suggested 12 predicted multi-epitope peptides, whose construction consists of 582 residues long. Therewith, cloning adaptation of the designed vaccine was performed, and eventually sequence was inserted into pET30a (+) vector for the application of the anti-glioblastoma vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Department of Microbial Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Catarina Raposo
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arefeh Abbasian
- Faculty of Basic Sciences, Department of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
35
|
Andongma BT, Huang Y, Chen F, Tang Q, Yang M, Chou SH, Li X, He J. In silico design of a promiscuous chimeric multi-epitope vaccine against Mycobacterium tuberculosis. Comput Struct Biotechnol J 2023; 21:991-1004. [PMID: 36733703 PMCID: PMC9883148 DOI: 10.1016/j.csbj.2023.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is a global health threat, killing approximately 1.5 million people each year. The eradication of Mycobacterium tuberculosis, the main causative agent of TB, is increasingly challenging due to the emergence of extensive drug-resistant strains. Vaccination is considered an effective way to protect the host from pathogens, but the only clinically approved TB vaccine, Bacillus Calmette-Guérin (BCG), has limited protection in adults. Multi-epitope vaccines have been found to enhance immunity to diseases by selectively combining epitopes from several candidate proteins. This study aimed to design a multi-epitope vaccine against TB using an immuno-informatics approach. Through functional enrichment, we identified eight proteins secreted by M. tuberculosis that are either required for pathogenesis, secreted into extracellular space, or both. We then analyzed the epitopes of these proteins and selected 16 helper T lymphocyte epitopes with interferon-γ inducing activity, 15 cytotoxic T lymphocyte epitopes, and 10 linear B-cell epitopes, and conjugated them with adjuvant and Pan HLA DR-binding epitope (PADRE) using appropriate linkers. Moreover, we predicted the tertiary structure of this vaccine, its potential interaction with Toll-Like Receptor-4 (TLR4), and the immune response it might elicit. The results showed that this vaccine had a strong affinity for TLR4, which could significantly stimulate CD4+ and CD8+ cells to secrete immune factors and B lymphocytes to secrete immunoglobulins, so as to obtain good humoral and cellular immunity. Overall, this multi-epitope protein was predicted to be stable, safe, highly antigenic, and highly immunogenic, which has the potential to serve as a global vaccine against TB.
Collapse
Affiliation(s)
- Binda T. Andongma
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yazheng Huang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China,CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China,Correspondence to: The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, Hubei 430070, PR China.
| | - Jin He
- State Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China,Correspondence to: The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
36
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
37
|
Rafi MO, Al-Khafaji K, Mandal SM, Meghla NS, Biswas PK, Rahman MS. A subunit vaccine against pneumonia: targeting S treptococcus pneumoniae and Klebsiella pneumoniae. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:21. [PMID: 37096010 PMCID: PMC10115389 DOI: 10.1007/s13721-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Community-acquired pneumonia is primarily caused by Streptococcus pneumoniae and Klebsiella pneumoniae, two pathogens that have high morbidity and mortality rates. This is largely due to bacterial resistance development against current antibiotics and the lack of effective vaccines. The objective of this work was to develop an immunogenic multi-epitope subunit vaccine capable of eliciting a robust immune response against S. pneumoniae and K. pneumoniae. The targeted proteins were the pneumococcal surface proteins (PspA and PspC) and choline-binding protein (CbpA) of S. pneumoniae and the outer membrane proteins (OmpA and OmpW) of K. pneumoniae. Different computational approaches and various immune filters were employed for designing a vaccine. The immunogenicity and safety of the vaccine were evaluated by utilizing many physicochemical and antigenic profiles. To improve structural stability, disulfide engineering was applied to a portion of the vaccine structure with high mobility. Molecular docking was performed to examine the binding affinities and biological interactions at the atomic level between the vaccine and Toll-like receptors (TLR2 and 4). Further, the dynamic stabilities of the vaccine and TLRs complexes were investigated by molecular dynamics simulations. While the immune response induction capability of the vaccine was assessed by the immune simulation study. Vaccine translation and expression efficiency was determined through an in silico cloning experiment utilizing the pET28a(+) plasmid vector. The obtained results revealed that the designed vaccine is structurally stable and able to generate an effective immune response to combat pneumococcal infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13721-023-00416-3.
Collapse
Affiliation(s)
- Md. Oliullah Rafi
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | | | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Nigar Sultana Meghla
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Md. Shahedur Rahman
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| |
Collapse
|
38
|
Susithra Priyadarshni M, Isaac Kirubakaran S, Harish MC. In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12948-12963. [PMID: 34528491 PMCID: PMC8477437 DOI: 10.1080/07391102.2021.1977702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The novel corona virus (COVID-19) is a causative agent for severe acute respiratory syndrome (SARS-CoV-2) and responsible for the current human pandemic situation which has caused global social and economic commotion. The currently available vaccines use whole viruses whereas there is scope for peptide based vaccines. Thus, the global raise in statistics of this infection at an alarming rate evoked us to determine a novel and effective vaccine candidate against SARS-CoV-2. To find the potential vaccine candidate targets, immunoinformatics approaches were used to analyze the mutations in the envelope protein and surface glycoprotein and determine the conserved region; further specific T-cell epitopes VSLVKPSFY, SLVKPSFYV, RVKNLNSSR, SEETGTLIV, LVKPSFYVY, LTDEMIAQY, YLQPRTFLL, RLFRKSNLK, SPRRARSVA, AEIRASANL, TLLALHRSY, YSRVKNLNS and FELLHAPAT and B-cells epitopes TLAILTALRLCAYCCN and AGTITSGWTFGAGAAL were identified. The 3 D structure of epitope was predicted, refined and validated. The molecular docking analysis of multi-epitope vaccine candidates with TLR receptors, predicted effective binding. Overall, using bioinformatics approach this multi-epitopic target facilitates the proof of concept for SARS-CoV-2 conserved epitopic vaccine design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - S. Isaac Kirubakaran
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, KS, USA
| | - M. C. Harish
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India,CONTACT M. C. Harish Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore632115, India
| |
Collapse
|
39
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
40
|
Pharmacophore-Model-Based Virtual-Screening Approaches Identified Novel Natural Molecular Candidates for Treating Human Neuroblastoma. Curr Issues Mol Biol 2022; 44:4838-4858. [PMID: 36286044 PMCID: PMC9600652 DOI: 10.3390/cimb44100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mortality of cancer patients with neuroblastoma is increasing due to the limited availability of specific treatment options. Few drug candidates for combating neuroblastoma have been developed, and identifying novel therapeutic candidates against the disease is an urgent issue. It has been found that muc-N protein is amplified in one-third of human neuroblastomas and expressed as an attractive drug target against the disease. The myc-N protein interferes with the bromodomain and extraterminal (BET) family proteins. Pharmacologically inhibition of the protein potently depletes MYCN in neuroblastoma cells. BET inhibitors target MYCN transcription and show therapeutic efficacy against neuroblastoma. Therefore, the study aimed to identify potential inhibitors against the BET family protein, specifically Brd4 (brodamine-containing protein 4), to hinder the activity of neuroblastoma cells. To identify effective molecular candidates against the disease, a structure-based pharmacophore model was created for the binding site of the Brd4 protein. The pharmacophore model generated from the protein Brd4 was validated to screen potential natural active compounds. The compounds identified through the pharmacophore-model-based virtual-screening process were further screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, and molecular dynamics (MD) simulation approach. The pharmacophore-model-based screening process initially identified 136 compounds, further evaluated based on molecular docking, ADME analysis, and toxicity approaches, identifying four compounds with good binding affinity and lower side effects. The stability of the selected compounds was also confirmed by dynamic simulation and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) methods. Finally, the study identified four natural lead compounds, ZINC2509501, ZINC2566088, ZINC1615112, and ZINC4104882, that will potentially inhibit the activity of the desired protein and help to fight against neuroblastoma and related diseases. However, further evaluations through in vitro and in vivo assays are suggested to identify their efficacy against the desired protein and disease.
Collapse
|
41
|
Akter S, Shahab M, Sarkar MMH, Hayat C, Banu TA, Goswami B, Jahan I, Osman E, Uzzaman MS, Habib MA, Shaikh AA, Khan MS. Immunoinformatics approach to epitope-based vaccine design against the SARS-CoV-2 in Bangladeshi patients. J Genet Eng Biotechnol 2022; 20:136. [PMID: 36125645 PMCID: PMC9487853 DOI: 10.1186/s43141-022-00410-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022. Bioinformatics techniques are used to predict B cell and T cell epitopes from the new SARS-CoV-2 spike glycoprotein in order to build a unique multiple epitope vaccine. The immunogenicity, antigenicity scores, and toxicity of these epitopes were evaluated and chosen based on their capacity to elicit an immune response. RESULT The best multi-epitope of the possible immunogenic property was created by combining epitopes. EAAAK, AAY, and GPGPG linkers were used to connect the epitopes. In several computer-based immune response analyses, this vaccine design was found to be efficient, as well as having high population coverage. CONCLUSION This research is entirely reliant on the development of epitope-based vaccines, and these in silico findings would represent a major step forward in the development of a vaccine that might eradicate SARS-CoV-2 in Bangladeshi patients.
Collapse
Affiliation(s)
- Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Chandni Hayat
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Eshrar Osman
- SciTech Consulting and Solutions, Dhaka, Bangladesh
| | | | - Md Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Aftab Ali Shaikh
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh.
| |
Collapse
|
42
|
Parmar M, Thumar R, Sheth J, Patel D. Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Struct Chem 2022; 33:2243-2260. [PMID: 36160688 PMCID: PMC9485025 DOI: 10.1007/s11224-022-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 10/26/2022]
Abstract
Millions of lives have been infected since the SARS-CoV-2 outbreak in 2019. The high human-to-human transmission rate has warranted a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging concern variants is B1.1.529 (Omicron), which carries ~ 30 mutations in the Spike protein (S) of SARS-CoV-2 and is predicted to evade antibody recognition even from vaccinated people. We used a structure-based approach and an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity was used for designing and predicting vaccine construct features and structure models. In addition, the MESV construct In silico cloning in the pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. Therefore, the proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02027-6.
Collapse
Affiliation(s)
- Meet Parmar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Ritik Thumar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Jigar Sheth
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Dhaval Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, 382355 Gujarat India
| |
Collapse
|
43
|
Dhanda SK, Malviya J, Gupta S. Not all T cell epitopes are equally desired: a review of in silico tools for the prediction of cytokine-inducing potential of T-cell epitopes. Brief Bioinform 2022; 23:6692551. [PMID: 36070623 DOI: 10.1093/bib/bbac382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Assessment of protective or harmful T cell response induced by any antigenic epitope is important in designing any immunotherapeutic molecule. The understanding of cytokine induction potential also helps us to monitor antigen-specific cellular immune responses and rational vaccine design. The classical immunoinformatics tools served well for prediction of B cell and T cell epitopes. However, in the last decade, the prediction algorithms for T cell epitope inducing specific cytokines have also been developed and appreciated in the scientific community. This review summarizes the current status of such tools, their applications, background algorithms, their use in experimental setup and functionalities available in the tools/web servers.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA-38015.,Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Jitendra Malviya
- Department of Life Sciences and Biological Science, IES University Bhopal, India
| | - Sudheer Gupta
- NGS & Bioinformatics Division, 3B BlackBio Biotech India Ltd., 7-C, Industrial Area, Govindpura, Bhopal, India
| |
Collapse
|
44
|
Pandey A, Madan R, Singh S. Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Curr Microbiol 2022; 79:306. [PMID: 36064873 PMCID: PMC9444117 DOI: 10.1007/s00284-022-03003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.
Collapse
Affiliation(s)
- Apoorva Pandey
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029 India
| | - Riya Madan
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
45
|
Naveed M, Sheraz M, Amin A, Waseem M, Aziz T, Khan AA, Ghani M, Shahzad M, Alruways MW, Dablool AS, Elazzazy AM, Almalki AA, Alamri AS, Alhomrani M. Designing a Novel Peptide-Based Multi-Epitope Vaccine to Evoke a Robust Immune Response against Pathogenic Multidrug-Resistant Providencia heimbachae. Vaccines (Basel) 2022; 10:vaccines10081300. [PMID: 36016188 PMCID: PMC9413917 DOI: 10.3390/vaccines10081300] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Providencia heimbachae, a Gram -ve, rod-shaped, and opportunistic bacteria isolated from the urine, feces, and skin of humans engage in a wide range of infectious diseases such as urinary tract infection (UTI), gastroenteritis, and bacteremia. This bacterium belongs to the Enterobacteriaceae family and can resist antibiotics known as multidrug-resistant (MDR), and as such can be life-threatening to humans. After retrieving the whole proteomic sequence of P. heimbachae ATCC 35613, a total of 6 non-homologous and pathogenic proteins were separated. These shortlisted proteins were further analyzed for epitope prediction and found to be highly non-toxic, non-allergenic, and antigenic. From these sequences, T-cell and B-cell (major histocompatibility complex class 1 and 2) epitopes were extracted that provided vaccine constructs, which were then analyzed for population coverage to find its reliability worldwide. The population coverage for MHC-1 and MHC-2 was 98.29% and 81.81%, respectively. Structural prediction was confirmed by validation through physiochemical molecular and immunological characteristics to design a stable and effective vaccine that could give positive results when injected into the body of the organism. Due to this approach, computational vaccines could be an effective alternative against pathogenic microbe since they cover a large population with positive results. In the end, the given findings may help the experimental vaccinologists to develop a very potent and effective peptide-based vaccine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (M.N.); (T.A.)
| | - Mohsin Sheraz
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Aatif Amin
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Muhammad Waseem
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Tariq Aziz
- Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Mang, Haripur 22621, Pakistan
- Correspondence: (M.N.); (T.A.)
| | - Ayaz Ali Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan
| | - Mustajab Ghani
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15273, Saudi Arabia
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarammah 24382, Saudi Arabia
| | - Ahmed M. Elazzazy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
46
|
Karsten H, Cords L, Westphal T, Knapp M, Brehm TT, Hermanussen L, Omansen TF, Schmiedel S, Woost R, Ditt V, Peine S, Lütgehetmann M, Huber S, Ackermann C, Wittner M, Addo MM, Sette A, Sidney J, Schulze zur Wiesch J. High-resolution analysis of individual spike peptide-specific CD4 + T-cell responses in vaccine recipients and COVID-19 patients. Clin Transl Immunology 2022; 11:e1410. [PMID: 35957961 PMCID: PMC9363231 DOI: 10.1002/cti2.1410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.
Collapse
Affiliation(s)
- Hendrik Karsten
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leon Cords
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Westphal
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Maximilian Knapp
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Lennart Hermanussen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Frederik Omansen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Stefan Schmiedel
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robin Woost
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Vanessa Ditt
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sven Peine
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Samuel Huber
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christin Ackermann
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Melanie Wittner
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Marylyn Martina Addo
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - John Sidney
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| |
Collapse
|
47
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
48
|
Khalid K, Saeed U, Aljuaid M, Ali MI, Anjum A, Waheed Y. Immunoinformatic Approach to Contrive a Next Generation Multi-Epitope Vaccine Against Achromobacter xylosoxidans Infections. Front Med (Lausanne) 2022; 9:902611. [PMID: 35899213 PMCID: PMC9309517 DOI: 10.3389/fmed.2022.902611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
Achromobacter xylosoxidans, previously identified as Alcaligenes xylosoxidans, is a rod-shaped, flagellated, non-fermenting Gram-negative bacterium that has the ability to cause diverse infections in humans. As a part of its intrinsic resistance to different antibiotics, Achromobacter spp. is also increasingly becoming resistant to Carbapenems. Lack of knowledge regarding the pathogen’s clinical features has led to limited efforts to develop countermeasures against infection. The current study utilized an immunoinformatic method to map antigenic epitopes (Helper T cells, B-cell and Cytotoxic-T cells) to design a vaccine construct. We found that 20 different epitopes contribute significantly to immune response instigation that was further supported by physicochemical analysis and experimental viability. The safety profile of our vaccine was tested for antigenicity, allergenicity, and toxicity against all the identified epitopes before they were used as vaccine candidates. The disulfide engineering was carried out in an area of high mobility to increase the stability of vaccine proteins. In order to determine if the constructed vaccine is compatible with toll-like receptor, the binding affinity of vaccine was investigated via molecular docking approach. With the in silico expression in host cells and subsequent immune simulations, we were able to detect the induction of both arms of the immune response, i.e., humoral response and cytokine induced response. To demonstrate its safety and efficacy, further experimental research is necessary.
Collapse
Affiliation(s)
- Kashaf Khalid
- Multidisciplinary Laboratory, Foundation University Islamabad, Islamabad, Pakistan
| | - Umar Saeed
- Biological Production Division, National Institute of Health, Islamabad, Pakistan
| | - Mohammad Aljuaid
- Department of Health Administration, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Yasir Waheed
- Clinical and Biomedical Research Center, Foundation University Islamabad, Islamabad, Pakistan
- Office of Research, Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- *Correspondence: Yasir Waheed,
| |
Collapse
|
49
|
Hasan MR, Alsaiari AA, Fakhurji BZ, Molla MHR, Asseri AH, Sumon MAA, Park MN, Ahammad F, Kim B. Application of Mathematical Modeling and Computational Tools in the Modern Drug Design and Development Process. Molecules 2022; 27:4169. [PMID: 35807415 PMCID: PMC9268380 DOI: 10.3390/molecules27134169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.
Collapse
Affiliation(s)
- Md Rifat Hasan
- Department of Mathematics, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Department of Applied Mathematics, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif 21944, Saudi Arabia;
| | - Burhan Zain Fakhurji
- iGene Medical Training and Molecular Research Center, Jeddah 21589, Saudi Arabia;
| | | | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Md Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| | - Foysal Ahammad
- Department of Biological Sciences, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| |
Collapse
|
50
|
Rahbar MR, Mubarak SMH, Hessami A, Khalesi B, Pourzardosht N, Khalili S, Zanoos KA, Jahangiri A. A unique antigen against SARS-CoV-2, Acinetobacter baumannii, and Pseudomonas aeruginosa. Sci Rep 2022; 12:10852. [PMID: 35760825 PMCID: PMC9237110 DOI: 10.1038/s41598-022-14877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The recent outbreak of COVID-19 has increased hospital admissions, which could elevate the risk of nosocomial infections, such as A. baumannii and P. aeruginosa infections. Although effective vaccines have been developed against SARS-CoV-2, no approved treatment option is still available against antimicrobial-resistant strains of A. baumannii and P. aeruginosa. In the current study, an all-in-one antigen was designed based on an innovative, state-of-the-art strategy. In this regard, experimentally validated linear epitopes of spike protein (SARS-CoV-2), OmpA (A. baumannii), and OprF (P. aeruginosa) were selected to be harbored by mature OmpA as a scaffold. The selected epitopes were used to replace the loops and turns of the barrel domain in OmpA; OprF311–341 replaced the most similar sequence within the OmpA, and three validated epitopes of OmpA were retained intact. The obtained antigen encompasses five antigenic peptides of spike protein, which are involved in SARS-CoV-2 pathogenicity. One of these epitopes, viz. QTQTNSPRRARSV could trigger antibodies preventing super-antigenic characteristics of spike and alleviating probable autoimmune responses. The designed antigen could raise antibodies neutralizing emerging variants of SARS-CoV-2 since at least two epitopes are consensus. In conclusion, the designed antigen is expected to raise protective antibodies against SARS-CoV-2, A. baumannii, and P. aeruginosa.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaden M H Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kobra Ahmadi Zanoos
- Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St., P.O. Box 1435915371, Tehran, Iran.
| |
Collapse
|