1
|
Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S. Antioxidant, antiglycation, and antibacterial of copper oxide nanoparticles synthesized using Caesalpinia Sappan extract. Drug Discov Ther 2024; 18:167-177. [PMID: 38945877 DOI: 10.5582/ddt.2024.01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.
Collapse
Affiliation(s)
- Mathurada Sasarom
- PhD Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Pisaisit Chaijareenont
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Sivaram A, Patil N. Nanoparticles in prevention of protein glycation. VITAMINS AND HORMONES 2024; 125:287-309. [PMID: 38997167 DOI: 10.1016/bs.vh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are formed by the non-enzymatic attachment of carbohydrates to a biological macromolecule. These AGEs bind to their cognate receptor called receptor for AGEs (RAGEs), which becomes one of the important causal factors for the initiation and progression of several diseases. A deep understanding into the pathways of RAGEs will help in identifying novel intervention modalities as a part of new therapeutic strategies. Although several approaches exist to target this pathway using small molecules, compounds of plant origin etc, nanoparticles have proven to be a critical method, given its several advantages. A high bioavailability, biocompatibility, ability to cross blood brain barrier and modifiable surface properties give nanoparticles an upper edge over other strategies. In this chapter, we will discuss AGEs, their involvement in diseases and the nanoparticles used for targeting this pathway.
Collapse
Affiliation(s)
- Aruna Sivaram
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Nayana Patil
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India.
| |
Collapse
|
3
|
Khan S, Balyan P, Ali A, Sharma S, Sachar S. Exploring the effect of surfactants on the interactions of manganese dioxide nanoparticles with biomolecules. J Biomol Struct Dyn 2023:1-21. [PMID: 38006308 DOI: 10.1080/07391102.2023.2283157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/27/2023]
Abstract
Interactions of manganese dioxide nanoparticles (MnO2 NPs) with vital biomolecules namely deoxyribonucleic acid (DNA) and serum albumin (BSA) have been studied in association with different surfactants by using fluorescence (steady state, synchronous and 3D), UV-visible, resonance light scattering (RLS), dynamic light scattering (DLS), and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The esterase activity of serum albumin was tested in associations with MnO2 NPs and surfactants. The antioxidant potential of prepared NPs was also evaluated (DPPH method). Gel electrophoresis was carried out to analyze the effect of MnO2 NPs and surfactants on DNA. Presence of CTAB, Tween 20, DTAB and Tween 80 enhanced nanoparticle-protein binding. Tween 20 based nanoparticle systems showed long-term stability and biocompatibility. The quenching of BSA fluorescence emission in presence of MnO2 NPs alone and along with Tween 20 revealed stronger association of nanoparticles with proteins. Enhancement in the esterase activity (BSA) was observed in the presence of Tween 20. Furthermore, radical scavenging activity showed highest antioxidant potential in presence of Tween 20. The enthalpy and entropy assessment for protein-NPs association showed the predominance of Vander Waals interactions and hydrogen bonding. The synchronous fluorescence analysis highlighted the involvement of tryptophan (Trp) in the MnO2 NPs-protein interactions. The study evaluates the influence of surfactant on the associations of MnO2 NPs with the essential biomolecules. The findings can be crucially utilized in designing biocompatible MnO2 formulations for long term applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shagufta Khan
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Prairna Balyan
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Punjab University, Chandigarh, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| |
Collapse
|
4
|
Raina N, Khan S, Soundhararajan R, Shahid M, Srinivasan H, Islam A. Understanding the nano colloid-protein interaction in crowded milieu. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Molecular insight into the antiglycating and antiaggregating potential of ferulic acid with BSA. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Alenazi F, Saleem M, Syed Khaja AS, Zafar M, Alharbi MS, Al Hagbani T, Khan MY, Ahmad W, Ahmad S. Antiglycation potential of plant based TiO 2 nanoparticle in D-ribose glycated BSA in vitro. Cell Biochem Funct 2022; 40:784-796. [PMID: 36128730 DOI: 10.1002/cbf.3744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Biosynthetic procedure is one of the best alternatives, inexpensive and ecologically sound for the synthesis of titanium dioxide (TiO2 ) nanoparticles using a methanolic extract of medicinal plant. The main prospect of this study was to investigate the antiglycation activity of the TiO2 nanoparticles (TNP) prepared by ethanolic leaf extract of the Coleus scutellarioides. In this study, biosynthesized TNP characterized with UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscope. These TNP were further investigated with respect to their antiglycation property and it was checked in the mixture of d-ribose glycated bovine serum albumin (BSA) by measuring ketoamine, carbonyl content, Advanced glycation end products (AGEs) and aggregation of protein instigated by glycation process. The inhibitory effect of TNP to restore the structure of BSA in presence of d-ribose were also characterize by biophysical techniques mentioned above. Therefore, the findings of this study suggest repurposing of TNP for its antiglycation property that could be helpful in prevention of glycation instigated AGEs formation and structural loss of proteins.
Collapse
Affiliation(s)
- Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Mubashir Zafar
- Department of Community Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waseem Ahmad
- Department of Chemistry, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
7
|
Kumar D, Desa A, Chougle S, Bhatkalkar SG, Sachar S, Selvaa Kumar C, Ali A. Evaluation of the antiglycating potential of thymoquinone and its interaction with BSA. J Biomol Struct Dyn 2021; 40:8455-8463. [PMID: 33908315 DOI: 10.1080/07391102.2021.1912642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymoquinone (TQ) is a bioactive component of medicinal plant, Nigella sativa. It has been identified as promising anti-inflammatory and anti-analgesic properties. In the present study, the TQ has been investigated for physiological interaction as well as binding properties with serum albumin and their thermodynamic parameters at different temperatures. Glycation process was checked with the measurement of fructosamine content, carbonyl content and total advanced glycated end products. The aggregation of amyloid β-structure was measured with Thioflavin-T and the secondary structure of BSA was observed by circular dichroism (CD) in glycated and thermal treated samples. The results indicate that the TQ showed binding interaction (both static and dynamic) with BSA (Kb= 18.31 × 107 M-1 at 293 K) and suppression of glycated products. The glycation-induced and thermal aggregation were prevented and the secondary structure of BSA was maintained. Therefore, these findings suggest that TQ may be used for a therapeutic drug for antiglycation as well as anti-aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Amisha Desa
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Sana Chougle
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | | | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - C Selvaa Kumar
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|