1
|
Feng W, Kong Q, Wang X, Zhao K, Lv C, Yu Z. Modulating the pH-activity profile of the glucose isomerase from Thermotoga marimita by introducing positively and negatively charged residues. Biophys Chem 2024; 318:107382. [PMID: 39721420 DOI: 10.1016/j.bpc.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI). Thirteen residues, eight surface amino acids and five near the vicinity of active sites, were selected by introducing positively charged residues near the active site (mutant E237R/N298K/N337R) and negatively charged residues at the enzyme surface (mutant R112E/K220E) and were site-mutated on the basis of computational analysis. In mutants E237R/N298K/N337R and R112E/K220E, there was a decrease in the optimal pH of the glucose isomerase from 7.0 to 6.0 and 5.5, respectively, and an increase in the optimal temperature of E237R/N298K/N337R from 95 °C to 100 °C. At pH 5.5 and pH 6.0, the specific activities of R112E/K220E and E237R/N298K/N337R were 2.81 and 1.79 times greater than that of the wild-type enzyme, respectively, and their thermostabilities were greater than that of TMGI. Therefore, these two mutants (E237R/N298K/N337R and R112E/K220E) have great potential for use in the industrial production of high-fructose corn syrup. Moreover, glucose isomerase was expressed in Pichia pastoris, which demonstrated that the high expression and secretion capacity of Pichia pastoris could be used to reduce the production cost of high-fructose corn syrup.
Collapse
Affiliation(s)
- Weihuan Feng
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China.
| | - Xihui Wang
- Qingdao Pubai Biotechnology Co., Ltd., Qingdao, Shandong 266520, China
| | - Ke Zhao
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Chao Lv
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| | - Zengyu Yu
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China
| |
Collapse
|
2
|
Gharui S, Sengupta D, Das A. Characterization of the Conformational Hotspots of the RNA-Dependent RNA Polymerase Complex Identifies a Unique Structural Malleability of nsp8. J Phys Chem B 2024; 128:9959-9975. [PMID: 39356135 DOI: 10.1021/acs.jpcb.4c03851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Several antiviral therapeutic approaches have been targeted toward the RNA-dependent RNA polymerase (RdRp) complex that is involved in viral genome replication. In SARS-CoV-2, although the RdRp is a multiprotein complex, the focus has been on the ligand binding catalytic core (nonstructural protein nsp12), and not the multiprotein functional dynamics. In this study, we focus on the conformational ensembles of the RdRp complex and their modulation by the presence of RNA, performing comprehensive microsecond-scale atomistic simulations of the apo- and RNA-bound complex. We delineate the differential impact of RNA on the constituent proteins, such as conformational polymorphisms, dominant segment-specific fluctuations, and the switch in dynamical crosstalk within the complex. We distinguish dynamical signatures of nsp7, nsp8, and nsp12 in the apo-state that are reduced in the presence of the RNA and appear to "prime" the complex for activity. Importantly, we identify a unique structural malleability of the nsp8 protein with high conformational heterogeneity in the apo state, especially at three sites (Y71 for nsp8A, and D52 and A66 for nsp8B). Our work highlights the functional implications of the polymorphism of nsp8 structures and reveals possibilities for the development of allosteric inhibitors.
Collapse
Affiliation(s)
- Sowmomita Gharui
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Xu L, Nawaz MZ, Khalid HR, Waqar-Ul-Haq, Alghamdi HA, Sun J, Zhu D. Modulating the pH profile of vanillin dehydrogenase enzyme from extremophile Bacillus ligniniphilus L1 through computational guided site-directed mutagenesis. Int J Biol Macromol 2024; 263:130359. [PMID: 38387643 DOI: 10.1016/j.ijbiomac.2024.130359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Vanillin dehydrogenase (VDH) has recently come forward as an important enzyme for the commercial production of vanillic acid from vanillin in a one-step enzymatic process. However, VDH with high alkaline tolerance and efficiency is desirable to meet the biorefinery requirements. In this study, computationally guided site-directed mutagenesis was performed by increasing the positive and negative charges on the surface and near the active site of the VDH from the alkaliphilic marine bacterium Bacillus ligniniphilus L1, respectively. In total, 20 residues including 15 from surface amino acids and 5 near active sites were selected based on computational analysis and were subjected to site-directed mutations. The optimum pH of the two screened mutants including I132R, and T235E from surface residue and near active site mutant was shifted to 9, and 8.6, with a 2.82- and 2.95-fold increase in their activity compared to wild enzyme at pH 9, respectively. A double mutant containing both these mutations i.e., I132R/T235E was produced which showed a shift in optimum pH of VDH from 7.4 to 9, with an increase of 74.91 % in enzyme activity. Therefore, the double mutant of VDH from the L1 strain (I132R/T235E) produced in this study represents a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Lingxia Xu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Zohaib Nawaz
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hafiz Rameez Khalid
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Waqar-Ul-Haq
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
4
|
Lima Neto JX, Bezerra KS, Barbosa ED, Araujo RL, Galvão DS, Lyra ML, Oliveira JIN, Akash S, Jardan YAB, Nafidi HA, Bourhia M, Fulco UL. Investigation of protein-protein interactions and hotspot region on the NSP7-NSP8 binding site in NSP12 of SARS-CoV-2. Front Mol Biosci 2024; 10:1325588. [PMID: 38304231 PMCID: PMC10830813 DOI: 10.3389/fmolb.2023.1325588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Background: The RNA-dependent RNA polymerase (RdRp) complex, essential in viral transcription and replication, is a key target for antiviral therapeutics. The core unit of RdRp comprises the nonstructural protein NSP12, with NSP7 and two copies of NSP8 (NSP81 and NSP82) binding to NSP12 to enhance its affinity for viral RNA and polymerase activity. Notably, the interfaces between these subunits are highly conserved, simplifying the design of molecules that can disrupt their interaction. Methods: We conducted a detailed quantum biochemical analysis to characterize the interactions within the NSP12-NSP7, NSP12-NSP81, and NSP12-NSP82 dimers. Our objective was to ascertain the contribution of individual amino acids to these protein-protein interactions, pinpointing hotspot regions crucial for complex stability. Results: The analysis revealed that the NSP12-NSP81 complex possessed the highest total interaction energy (TIE), with 14 pairs of residues demonstrating significant energetic contributions. In contrast, the NSP12-NSP7 complex exhibited substantial interactions in 8 residue pairs, while the NSP12-NSP82 complex had only one pair showing notable interaction. The study highlighted the importance of hydrogen bonds and π-alkyl interactions in maintaining these complexes. Intriguingly, introducing the RNA sequence with Remdesivir into the complex resulted in negligible alterations in both interaction energy and geometric configuration. Conclusion: Our comprehensive analysis of the RdRp complex at the protein-protein interface provides invaluable insights into interaction dynamics and energetics. These findings can guide the design of small molecules or peptide/peptidomimetic ligands to disrupt these critical interactions, offering a strategic pathway for developing effective antiviral drugs.
Collapse
Affiliation(s)
- José Xavier Lima Neto
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katyanna Sales Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Roniel Lima Araujo
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
5
|
Carter C, Airas J, Gladden H, Miller BR, Parish CA. Exploring the disruption of SARS-CoV-2 RBD binding to hACE2. Front Chem 2023; 11:1276760. [PMID: 37954960 PMCID: PMC10635427 DOI: 10.3389/fchem.2023.1276760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
The COVID-19 pandemic was declared due to the spread of the novel coronavirus, SARS-CoV-2. Viral infection is caused by the interaction between the SARS-CoV-2 receptor binding domain (RBD) and the human ACE2 receptor (hACE2). Previous computational studies have identified repurposed small molecules that target the RBD, but very few have screened drugs in the RBD-hACE2 interface. When studies focus solely on the binding affinity between the drug and the RBD, they ignore the effect of hACE2, resulting in an incomplete analysis. We screened ACE inhibitors and previously identified SARS-CoV-2 inhibitors for binding to the RBD-hACE2 interface, and then conducted 500 ns of unrestrained molecular dynamics (MD) simulations of fosinopril, fosinoprilat, lisinopril, emodin, diquafosol, and physcion bound to the interface to assess the binding characteristics of these ligands. Based on MM-GBSA analysis, all six ligands bind favorably in the interface and inhibit the RBD-hACE2 interaction. However, when we repeat our simulation by first binding the drug to the RBD before interacting with hACE2, we find that fosinopril, fosinoprilat, and lisinopril result in a strongly interacting trimeric complex (RBD-drug-hACE2). Hydrogen bonding and pairwise decomposition analyses further suggest that fosinopril is the best RBD inhibitor. However, when lisinopril is bound, it stabilizes the trimeric complex and, therefore, is not an ideal potential drug candidate. Overall, these results reveal important atomistic interactions critical to the binding of the RBD to hACE2 and highlight the significance of including all protein partners in the evaluation of a potential drug candidate.
Collapse
Affiliation(s)
- Camryn Carter
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| | - Justin Airas
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| | - Haley Gladden
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University, Kirksville, MO, United States
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA, United States
| |
Collapse
|
6
|
Yoon HJ, Kundu S, Wu S. Molecular Dynamics Simulation Study of the Selective Inhibition of Coagulation Factor IXa over Factor Xa. Molecules 2023; 28:6909. [PMID: 37836752 PMCID: PMC10574344 DOI: 10.3390/molecules28196909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Thromboembolic disorders, arising from abnormal coagulation, pose a significant risk to human life in the modern world. The FDA has recently approved several anticoagulant drugs targeting factor Xa (FXa) to manage these disorders. However, these drugs have potential side effects, leading to bleeding complications in patients. To mitigate these risks, coagulation factor IXa (FIXa) has emerged as a promising target due to its selective regulation of the intrinsic pathway. Due to the high structural and functional similarities of these coagulation factors and their inhibitor binding modes, designing a selective inhibitor specifically targeting FIXa remains a challenging task. The dynamic behavior of protein-ligand interactions and their impact on selectivity were analyzed using molecular dynamics simulation, considering the availability of potent and selective compounds for both coagulation factors and the co-crystal structures of protein-ligand complexes. Throughout the simulations, we examined ligand movements in the binding site, as well as the contact frequencies and interaction fingerprints, to gain insights into selectivity. Interaction fingerprint (IFP) analysis clearly highlights the crucial role of strong H-bond formation between the ligand and D189 and A190 in the S1 subsite for FIXa selectivity, consistent with our previous study. This dynamic analysis also reveals additional FIXa-specific interactions. Additionally, the absence of polar interactions contributes to the selectivity for FXa, as observed from the dynamic profile of interactions. A contact frequency analysis of the protein-ligand complexes provides further confirmation of the selectivity criteria for FIXa and FXa, as well as criteria for binding and activity. Moreover, a ligand movement analysis reveals key interaction dynamics that highlight the tighter binding of selective ligands to the proteins compared to non-selective and inactive ligands.
Collapse
Affiliation(s)
- Hyun Jung Yoon
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sibsankar Kundu
- R&D Center, PharmCADD Co., Ltd., Busan 48792, Republic of Korea;
| | - Sangwook Wu
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea;
- R&D Center, PharmCADD Co., Ltd., Busan 48792, Republic of Korea;
| |
Collapse
|
7
|
Aleebrahim-Dehkordi E, Ghoshouni H, Koochaki P, Esmaili-Dehkordi M, Aleebrahim E, Chichagi F, Jafari A, Hanaei S, Heidari-Soureshjani E, Rezaei N. Targeting the vital non-structural proteins (NSP12, NSP7, NSP8 and NSP3) from SARS-CoV-2 and inhibition of RNA polymerase by natural bioactive compound naringenin as a promising drug candidate against COVID-19. J Mol Struct 2023; 1287:135642. [PMID: 37131962 PMCID: PMC10131750 DOI: 10.1016/j.molstruc.2023.135642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
The prevalence of SARS-CoV-2-induced respiratory infections is now a major challenge worldwide. There is currently no specific antiviral drug to prevent or treat this disease. Infection with COVID-19 seriously needs to find effective therapeutic agents. In the present study, naringenin, as a potential inhibitor candidate for RNA Polymerase SARS-CoV-2 was compared with remdesivir (FDA-approved drug) and GS-441,524 (Derivative of the drug remdesivir) by screening with wild-type and mutant SARS-CoV-2 NSP12 (NSP7-NSP8) and NSP3 interfaces, then complexes were simulated by molecular dynamics (MD) simulations to gain their stabilities. The docking results displayed scores of -3.45 kcal/mol and -4.32 kcal/mol against NSP12 and NSP3, respectively. Our results showed that naringenin had ΔG values more negative than the ΔG values of Remdesivir (RDV) and GS-441,524. Hence, naringenin was considered to be a potential inhibitor. Also, the number of hydrogen bonds of naringenin with NSP3 and later NSP12 are more than Remdesivir and its derivative. In this research, Mean root mean square deviation (RMSD) values of NSP3 and NSP12with naringenin ligand (5.55±1.58 nm to 3.45±0.56 nm and 0.238±0.01 to 0.242±0.021 nm, respectively showed stability in the presence of ligand. The root mean square fluctuations (RMSF) values of NSP3 and NSP12 amino acid units in the presence of naringenin in were 1.5 ± 0.31 nm and 0.118±0.058, respectively. Pharmacokinetic properties and prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of naringenin and RDV showed that these two compounds had no potential cytotoxicity.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamed Ghoshouni
- Medical student, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Pooneh Koochaki
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Elham Aleebrahim
- PhD Student in Food Sciences and Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Fatemeh Chichagi
- Research Development Center, Sina Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ali Jafari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hanaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ehsan Heidari-Soureshjani
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box. 115, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zheng X, Yang L, Sun Q, Zhang L, Le T. Development and Validation of Aptasensor Based on MnO 2 for the Detection of Sulfadiazine Residues. BIOSENSORS 2023; 13:613. [PMID: 37366978 DOI: 10.3390/bios13060613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
The monitoring of sulfadiazine (SDZ) is of great significance for food safety, environmental protection, and human health. In this study, a fluorescent aptasensor based on MnO2 and FAM-labeled SDZ aptamer (FAM-SDZ30-1) was developed for the sensitive and selective detection of SDZ in food and environmental samples. MnO2 nanosheets adsorbed rapidly to the aptamer through its electrostatic interaction with the base, providing the basis for an ultrasensitive SDZ detection. Molecular dynamics was used to explain the combination of SMZ1S and SMZ. This fluorescent aptasensor exhibited high sensitivity and selectivity with a limit of detection of 3.25 ng/mL and a linear range of 5-40 ng/mL. The recoveries ranged from 87.19% to 109.26% and the coefficients of variation ranged from 3.13% to 13.14%. In addition, the results of the aptasensor showed an excellent correlation with high-performance liquid chromatography (HPLC). Therefore, this aptasensor based on MnO2 is a potentially useful methodology for highly sensitive and selective detection of SDZ in foods and environments.
Collapse
Affiliation(s)
- Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lulan Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lei Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
9
|
Rababi D, Nag A. Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study. 3 Biotech 2023; 13:174. [PMID: 37180429 PMCID: PMC10170460 DOI: 10.1007/s13205-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
The current study attempted to evaluate the potential of fifty-three (53) natural compounds as Nipah virus attachment glycoprotein (NiV G) inhibitors through in silico molecular docking study. Pharmacophore alignment of the four (4) selected compounds (Naringin, Mulberrofuran B, Rutin and Quercetin 3-galactoside) through Principal Component Analysis (PCA) revealed that common pharmacophores, namely four H bond acceptors, one H bond donor and two aromatic groups were responsible for the residual interaction with the target protein. Out of these four compounds, Naringin was found to have the highest inhibitory potential ( - 9.19 kcal mol-1) against the target protein NiV G, when compared to the control drug, Ribavirin ( - 6.95 kcal mol-1). The molecular dynamic simulation revealed that Naringin could make a stable complex with the target protein in the near-native physiological condition. Finally, MM-PBSA (Molecular Mechanics-Poisson-Boltzmann Solvent-Accessible Surface Area) analysis in agreement with our molecular docking result, showed that Naringin ( - 218.664 kJ mol-1) could strongly bind with the target protein NiV G than the control drug Ribavirin ( - 83.812 kJ mol-1). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03595-y.
Collapse
Affiliation(s)
- Deblina Rababi
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
10
|
Ashraf H, Dilshad E, Afsar T, Almajwal A, Shafique H, Razak S. Molecular Screening of Bioactive Compounds of Garlic for Therapeutic Effects against COVID-19. Biomedicines 2023; 11:biomedicines11020643. [PMID: 36831179 PMCID: PMC9953069 DOI: 10.3390/biomedicines11020643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
An outbreak of pneumonia occurred on December 2019 in Wuhan, China, which caused a serious public health emergency by spreading around the globe. Globally, natural products are being focused on more than synthetic ones. So, keeping that in view, the current study was conducted to discover potential antiviral compounds from Allium sativum. Twenty-five phytocompounds of this plant were selected from the literature and databases including 3-(Allylsulphinyl)-L-alanine, Allicin, Diallyl sulfide, Diallyl disulfide, Diallyl trisulfide, Glutathione, L-Cysteine, S-allyl-mercapto-glutathione, Quercetin, Myricetin, Thiocysteine, Gamma-glutamyl-Lcysteine, Gamma-glutamylallyl-cysteine, Fructan, Lauricacid, Linoleicacid, Allixin, Ajoene, Diazinon Kaempferol, Levamisole, Caffeicacid, Ethyl linoleate, Scutellarein, and S-allylcysteine methyl-ester. Virtual screening of these selected ligands was carried out against drug target 3CL protease by CB-dock. Pharmacokinetic and pharmacodynamic properties defined the final destiny of compounds as drug or non-drug molecules. The best five compounds screened were Allicin, Diallyl Sulfide, Diallyl Disulfide, Diallyl Trisulfide, Ajoene, and Levamisole, which showed themselves as hit compounds. Further refining by screening filters represented Levamisole as a lead compound. All the interaction visualization analysis studies were performed using the PyMol molecular visualization tool and LigPlot+. Conclusively, Levamisole was screened as a likely antiviral compound which might be a drug candidate to treat SARS-CoV-2 in the future. Nevertheless, further research needs to be carried out to study their potential medicinal use.
Collapse
Affiliation(s)
- Huma Ashraf
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan
- Correspondence: (E.D.); (S.R.)
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Huma Shafique
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Newcastle NE1 7RU, UK
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Correspondence: (E.D.); (S.R.)
| |
Collapse
|
11
|
Kapoor S, Singh A, Gupta V. In silico evaluation of potential intervention against SARS-CoV-2 RNA-dependent RNA polymerase. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2023; 129:103350. [PMID: 36536697 PMCID: PMC9750507 DOI: 10.1016/j.pce.2022.103350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/17/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Background With few available effective interventions, emergence of novel mutants responding poorly to existing vaccines and ever swelling newer waves of infection, SARS-CoV-2 is posing difficult challenges to mankind. This mandates development of newer and effective therapeutics to prevent loss of life and contain the spread of this deadly virus. Nsp12 or RNA-dependent RNA polymerase (RdRp) is a suitable druggable target as it plays a central role in viral replication. Methodology Catalytically important conserved amino acid residues of RdRp were delineated through a comprehensive literature search and multiple sequence alignments. PDB ID 7BV2 was used to create binding pockets using SeeSAR and to generate docked poses of the FDA approved drugs on the receptor and estimating their binding affinity and other properties. Result In silico approach used in this study assisted in prediction of several potential RdRp inhibitors; and re-validation of the already reported ones. Five molecules namely Inosine, Ribavirin, 2-Deoxy-2-Fluoro-D-glucose, Guaifenesin, and Lamivudine were shortlisted which exhibited reasonable binding affinities, with neither torsional nor intermolecular or intramolecular clashes. Conclusion This study aimed to widen the prospect of interventions against the SARS-CoV-2 RdRp. Our results also re-validate already reported molecules like 2-Deoxy-D-glucose as a similar molecule 2-deoxy-2-fluoro-D-glucose is picked up in this study. Additionally, ribavirin and lamivudine, already known antivirals with polymerase inhibition activity are also picked up as the top leads. Selected potent inhibitors of RdRp hold promise to cater for any future coronavirus-outbreak subject to in vitro and in vivo validations.
Collapse
Affiliation(s)
- Shreya Kapoor
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
- Delhi Technological University, New Delhi, India
| | - Anurag Singh
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
- ICMR-National Institute of Virology, Pune, Maharashtra, 411021, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
12
|
Discovering new potential inhibitors to SARS-CoV-2 RNA dependent RNA polymerase (RdRp) using high throughput virtual screening and molecular dynamics simulations. Sci Rep 2022; 12:19986. [PMID: 36411383 PMCID: PMC9676757 DOI: 10.1038/s41598-022-24695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp), is an essential in the RNA replication within the life cycle of the severely acute respiratory coronavirus-2 (SARS-CoV-2), causing the deadly respiratory induced sickness COVID-19. Remdesivir is a prodrug that has seen some success in inhibiting this enzyme, however there is still the pressing need for effective alternatives. In this study, we present the discovery of four non-nucleoside small molecules that bind favorably to SARS-CoV-2 RdRp over the active form of the popular drug remdesivir (RTP) and adenosine triphosphate (ATP) by utilizing high-throughput virtual screening (HTVS) against the vast ZINC compound database coupled with extensive molecular dynamics (MD) simulations. After post-trajectory analysis, we found that the simulations of complexes containing both ATP and RTP remained stable for the duration of their trajectories. Additionally, it was revealed that the phosphate tail of RTP was stabilized by both the positive amino acid pocket and magnesium ions near the entry channel of RdRp which includes residues K551, R553, R555 and K621. It was also found that residues D623, D760, and N691 further stabilized the ribose portion of RTP with U10 on the template RNA strand forming hydrogen pairs with the adenosine motif. Using these models of RdRp, we employed them to screen the ZINC database of ~ 17 million molecules. Using docking and drug properties scoring, we narrowed down our selection to fourteen candidates. These were subjected to 200 ns simulations each underwent free energy calculations. We identified four hit compounds from the ZINC database that have similar binding poses to RTP while possessing lower overall binding free energies, with ZINC097971592 having a binding free energy two times lower than RTP.
Collapse
|
13
|
Aljuaid A, Salam A, Almehmadi M, Baammi S, Alshabrmi FM, Allahyani M, Al-Zaydi KM, Izmirly AM, Almaghrabi S, Baothman BK, Shahab M. Structural Homology-Based Drug Repurposing Approach for Targeting NSP12 SARS-CoV-2. Molecules 2022; 27:7732. [PMID: 36431833 PMCID: PMC9694939 DOI: 10.3390/molecules27227732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2, is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 has a highly conserved non-structural protein 12 (NSP-12) involved in RNA-dependent RNA polymerase (RdRp) activity. For the identification of potential inhibitors for NSP-12, computational approaches such as the identification of homologous proteins that have been previously targeted by FDA-approved antivirals can be employed. Herein, homologous proteins of NSP-12 were retrieved from Protein DataBank (PDB) and the evolutionary conserved sequence and structure similarity of the active site of the RdRp domain of NSP-12 was characterized. The identified homologous structures of NSP-12 belonged to four viral families: Coronaviridae, Flaviviridae, Picornaviridae, and Caliciviridae, and shared evolutionary conserved relationships. The multiple sequences and structural alignment of homologous structures showed highly conserved amino acid residues that were located at the active site of the RdRp domain of NSP-12. The conserved active site of the RdRp domain of NSP-12 was evaluated for binding affinity with the FDA-approved antivirals, i.e., Sofosbuvir and Dasabuvir in a molecular docking study. The molecular docking of Sofosbuvir and Dasabuvir with the active site that contains conserved motifs (motif A-G) of the RdRp domain of NSP-12 revealed significant binding affinity. Furthermore, MD simulation also inferred the potency of Sofosbuvir and Dasabuvir. In conclusion, targeting the active site of the RdRp domain of NSP-12 with Dasabuvir and Sofosbuvir might reduce viral replication and pathogenicity and could be further studied for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdus Salam
- Precision Medicine Lab, Laboratory Building, Rehman Medical Institute, Phase-V, Hayatabad, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khadijah M. Al-Zaydi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23738, Saudi Arabia
| | - Abdullah M. Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar K. Baothman
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Comprehensive Network Analysis Reveals the Targets and Potential Multitarget Drugs of Type 2 Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8255550. [PMID: 35936218 PMCID: PMC9352488 DOI: 10.1155/2022/8255550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease with increasing prevalence and mortality year by year. The purpose of this study was to explore new therapeutic targets and candidate drugs for multitargets by single-cell RNA expression profile analysis, network pharmacology, and molecular docking. Single-cell RNA expression profiling of islet β cell samples between T2DM patients and nondiabetic controls was conducted to identify important subpopulations and the marker genes. The potential therapeutic targets of T2DM were identified by the overlap analysis of insulin-related genes and diabetes-related genes, the construction of protein-protein interaction network, and the molecular complex detection (MCODE) algorithm. The network distance method was employed to determine the potential drugs of the target. Molecular docking and molecular dynamic simulations were carried out using AutoDock Vina and Gromacs2019, respectively. Eleven cell clusters were identified by single-cell RNA sequencing (scRNA-seq) data, and three of them (C2, C8, and C10) showed significant differences between T2DM samples and normal samples. Eight genes from differential cell clusters were found from differential cell clusters to be associated with insulin activity and T2DM. The MCODE algorithm built six key subnetworks, with five of them correlating with inflammatory pathways and immune cell infiltration. Importantly, CCR5 was a gene within the key subnetworks and was differentially expressed between normal samples and T2DM samples, with the highest area under the ROC curve (AUC) of 82.5% for the diagnosis model. A total of 49 CCR5-related genes were screened, and DB05494 was identified as the most potential drug with the shortest distance to CCR5-related genes. Molecular docking illustrated that DB05494 stably bound with CCR5 (-8.0 kcal/mol) through multiple hydrogen bonds (LYS26, TYR37, TYR89, CYS178, and GLN280) and hydrophobic bonds (TRP86, PHE112, ILE198, TRP248, and TYR251). This study identified CCR5 as a potential therapeutic target and screened DB05494 as a potential drug for T2DM treatment.
Collapse
|
15
|
Wang B, Svetlov D, Bartikofsky D, Wobus CE, Artsimovitch I. Going Retro, Going Viral: Experiences and Lessons in Drug Discovery from COVID-19. Molecules 2022; 27:3815. [PMID: 35744940 PMCID: PMC9228142 DOI: 10.3390/molecules27123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
The severity of the COVID-19 pandemic and the pace of its global spread have motivated researchers to opt for repurposing existing drugs against SARS-CoV-2 rather than discover or develop novel ones. For reasons of speed, throughput, and cost-effectiveness, virtual screening campaigns, relying heavily on in silico docking, have dominated published reports. A particular focus as a drug target has been the principal active site (i.e., RNA synthesis) of RNA-dependent RNA polymerase (RdRp), despite the existence of a second, and also indispensable, active site in the same enzyme. Here we report the results of our experimental interrogation of several small-molecule inhibitors, including natural products proposed to be effective by in silico studies. Notably, we find that two antibiotics in clinical use, fidaxomicin and rifabutin, inhibit RNA synthesis by SARS-CoV-2 RdRp in vitro and inhibit viral replication in cell culture. However, our mutagenesis studies contradict the binding sites predicted computationally. We discuss the implications of these and other findings for computational studies predicting the binding of ligands to large and flexible protein complexes and therefore for drug discovery or repurposing efforts utilizing such studies. Finally, we suggest several improvements on such efforts ongoing against SARS-CoV-2 and future pathogens as they arise.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | | | - Dylan Bartikofsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; (D.B.); (C.E.W.)
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; (D.B.); (C.E.W.)
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
16
|
Semmate N, Zouagui Z, Elkarhat Z, Bamouh Z, Fellahi S, Tligui N, Boumart Z, Fihri OF, El Harrak M. Molecular characterization and pathogenicity of Mycoplasma capricolum subsp. capricpolum from goats in Morocco. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMycoplasma capricolum subsp. capricolum (Mcc) is an important etiological agent of contagious agalactia (CA). CA affects small ruminants and is characterized by inducing mastitis, arthritis, kerato-conjunctivitis and respiratory symptoms. The aim of this study was to isolate and characterize Mcc from Moroccan goats with contagious agalactia. A total of 300 Alpine goats were monitored. Serology analysis, molecular identification, and isolation of Mcc were realized from suspected goats. An experimental study was conducted for isolated Mcc to determine their pathogenicity. Thus, clinical observation showed that respiratory symptoms were predominant in young animals, and other symptoms, such as mastitis, keratoconjunctivitis and lameness, were more frequently detected in adult goats. Of the 80 tested blood samples, 28 sera were seropositive for Mcc antibodies. Mcc was identified by polymerase chain reaction (PCR) in milk, lung tissue and synovial liquid samples. The isolation of Mcc was successful through bacterial culture from lung tissue. LppA gene sequence of this strain revealed 98.1% similarity with the reference strain (ATCC 27343), with 11 missense variants. Experimental infection resulted in severe and generalized CA disease in sheep and goats, confirming the high pathogenicity of the Moroccan Mcc isolate.
Collapse
|
17
|
Panayiotakopoulos GD, Papadimitriou DT. Rifampicin for COVID-19. World J Virol 2022; 11:90-97. [PMID: 35433334 PMCID: PMC8966591 DOI: 10.5501/wjv.v11.i2.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccinations for coronavirus disease-2019 (COVID-19) have begun more than a year before, yet without specific treatments available. Rifampicin, critically important for human medicine (World Health Organization’s list of essential medicines), may prove pharmacologically effective for treatment and chemoprophylaxis of healthcare personnel and those at higher risk. It has been known since 1969 that rifampicin has a direct selective antiviral effect on viruses which have their own RNA polymerase (severe acute respiratory syndrome coronavirus 2), like the main mechanism of action of remdesivir. This involves inhibition of late viral protein synthesis, the virion assembly, and the viral polymerase itself. This antiviral effect is dependent on the administration route, with local application resulting in higher drug concentrations at the site of viral replication. This would suggest also trying lung administration of rifampicin by nebulization to increase the drug’s concentration at infection sites while minimizing systemic side effects. Recent in silico studies with a computer-aided approach, found rifampicin among the most promising existing drugs that could be repurposed for the treatment of COVID-19.
Collapse
Affiliation(s)
- George D Panayiotakopoulos
- Department of Clinical Pharmacology, University of Patras Medical School, Rion 26504, Greece
- The National Public Health Organization of Greece, Athens 15123, Greece
| | - Dimitrios T Papadimitriou
- Department of Pediatric, Adolescent Endocrinology & Diabetes, Athens Medical Center, Marousi 15125, Greece
- Endocrine Unit, Aretaieion University Hospital, Athens 11528, Greece
| |
Collapse
|
18
|
Fernandez RA, Quimque MT, Notarte KI, Manzano JA, Pilapil DY, de Leon VN, San Jose JJ, Villalobos O, Muralidharan NH, Gromiha MM, Brogi S, Macabeo APG. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. J Biomol Struct Dyn 2021; 40:12209-12220. [PMID: 34463219 PMCID: PMC8436362 DOI: 10.1080/07391102.2021.1969281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The severity of the COVID-19 pandemic has necessitated the search for drugs against SARS-CoV-2. In this study, we explored via in silico approaches myxobacterial secondary metabolites against various receptor-binding regions of SARS-CoV-2 spike which are responsible in recognition and attachment to host cell receptors mechanisms, namely ACE2, GRP78, and NRP1. In general, cyclic depsipeptide chondramides conferred high affinities toward the spike RBD, showing strong binding to the known viral hot spots Arg403, Gln493 and Gln498 and better selectivity compared to most host cell receptors studied. Among them, chondramide C3 (1) exhibited a binding energy which remained relatively constant when docked against most of the spike variants. Chondramide C (2) on the other hand exhibited strong affinity against spike variants identified in the United Kingdom (N501Y), South Africa (N501Y, E484K, K417N) and Brazil (N501Y, E484K, K417T). Chondramide C6 (9) showed highest BE towards GRP78 RBD. Molecular dynamics simulations were also performed for chondramides 1 and 2 against SARS-CoV-2 spike RBD of the Wuhan wild-type and the South African variant, respectively, where resulting complexes demonstrated dynamic stability within a 120-ns simulation time. Protein-protein binding experiments using HADDOCK illustrated weaker binding affinity for complexed chondramide ligands in the RBD against the studied host cell receptors. The chondramide derivatives in general possessed favorable pharmacokinetic properties, highlighting their potential as prototypic anti-COVID-19 drugs limiting viral attachment and possibly minimizing viral infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rey Arturo Fernandez
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Mark Tristan Quimque
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Chemistry Department, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Tibanga, Iligan City, Philippines
| | - Kin Israel Notarte
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Joe Anthony Manzano
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Delfin Yñigo Pilapil
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Von Novi de Leon
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - John Jeric San Jose
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Omar Villalobos
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Nisha Harur Muralidharan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
19
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
20
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
21
|
Weng YL, Naik SR, Dingelstad N, Lugo MR, Kalyaanamoorthy S, Ganesan A. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Sci Rep 2021; 11:7429. [PMID: 33795718 PMCID: PMC8016996 DOI: 10.1038/s41598-021-86471-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
The 2019 novel coronavirus pandemic caused by SARS-CoV-2 remains a serious health threat to humans and there is an urgent need to develop therapeutics against this deadly virus. Recent scientific evidences have suggested that the main protease (Mpro) enzyme in SARS-CoV-2 can be an ideal drug target due to its crucial role in the viral replication and transcription processes. Therefore, there are ongoing research efforts to identify drug candidates against SARS-CoV-2 Mpro that resulted in hundreds of X-ray crystal structures of ligand-bound Mpro complexes in the Protein Data Bank (PDB) describing the interactions of different fragment chemotypes within different sites of the Mpro. In this work, we performed rigorous molecular dynamics (MD) simulation of 62 reversible ligand-Mpro complexes in the PDB to gain mechanistic insights about their interactions at the atomic level. Using a total of over 3 µs long MD trajectories, we characterized different pockets in the apo Mpro structure, and analyzed the dynamic interactions and binding affinity of ligands within those pockets. Our results identified the key residues that stabilize the ligands in the catalytic sites and other pockets of Mpro. Our analyses unraveled the role of a lateral pocket in the catalytic site in Mpro that is critical for enhancing the ligand binding to the enzyme. We also highlighted the important contribution from HIS163 in the lateral pocket towards ligand binding and affinity against Mpro through computational mutation analyses. Further, we revealed the effects of explicit water molecules and Mpro dimerization in the ligand association with the target. Thus, comprehensive molecular-level insights gained from this work can be useful to identify or design potent small molecule inhibitors against SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Ying Li Weng
- ArGan's Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Shiv Rakesh Naik
- ArGan's Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Nadia Dingelstad
- ArGan's Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Miguel R Lugo
- ArGan's Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Aravindhan Ganesan
- ArGan's Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
22
|
An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chem Phys Lett 2020; 763:138193. [PMID: 33223560 PMCID: PMC7666712 DOI: 10.1016/j.cplett.2020.138193] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Lurasidone and Lurasidone exo inhibit SARS-CoV-2 via ‘one drug multiple targets’ strategy. MD simulation revealed their strong binding affinity against multiple targets of SARS-CoV-2. Both the drugs exhibit favourable pharmacokinetic properties as predicted by ADMET parameters. Their unique multitargeting feature warrants further in-vitro and in-vivo experiments.
The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. We extracted this idea for the investigation of drugs for COVID-19. Perceiving the importance of organosulfur compounds, seventy-six known organosulfur compounds were screened and studied for the interaction with multiple SARS-CoV-2 target proteins by molecular dynamics simulation. Lurasidone and its derivatives displayed substantial binding affinity against five proteins (Mpro, PLpro, Spro, helicase and RdRp). The pharmacokinetics, ADMET properties and target prediction studies performed in this work further potentiates the effectiveness against SARS-CoV-2.
Collapse
|