1
|
Zhao H, Li H, Liu Q, Dong G, Hou C, Li Y, Zhao Y. Using TransR to enhance drug repurposing knowledge graph for COVID-19 and its complications. Methods 2024; 221:82-90. [PMID: 38104883 DOI: 10.1016/j.ymeth.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
MOTIVATION The COVID-19 pandemic has been spreading globally for four years, yet specific drugs that effectively suppress the virus remain elusive. Furthermore, the emergence of complications associated with COVID-19 presents significant challenges, making the development of therapeutics for COVID-19 and its complications an urgent task. However, traditional drug development processes are time-consuming. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, presents a viable alternative. RESULT In this study, we construct a knowledge graph by retrieving information on genes, drugs, and diseases from databases such as DRUGBANK and GNBR. Next, we employ the TransR knowledge representation learning approach to embed entities and relationships into the knowledge graph. Subsequently, we train the knowledge graph using a graph neural network model based on TransR scoring. This trained knowledge graph is then utilized to predict drugs for the treatment of COVID-19 and its complications. Based on experimental results, we have identified 15 drugs out of the top 30 with the highest success rates associated with treating COVID-19 and its complications. Notably, out of these 15 drugs, 10 specifically aimed at treating COVID-19, such as Torcetrapib and Tocopherol, has not been previously identified in the knowledge graph. This finding highlights the potential of our model in aiding healthcare professionals in drug development and research related to this disease.
Collapse
Affiliation(s)
- Hongxi Zhao
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China; College of Life Science, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Qiaoming Liu
- School of Medicine and Health, Harbin Institute of Technology, 150001, Harbin, HeiLongJiang, China; Zhengzhou Research Institute, Harbin Institute of Technology, 450000, Zhengzhou, Henan, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Chang Hou
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China.
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China; College of Life Science, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China.
| |
Collapse
|
2
|
High-Affinity Antibodies Designing of SARS-CoV-2 Based on Molecular Dynamics Simulations. Int J Mol Sci 2022; 24:ijms24010481. [PMID: 36613923 PMCID: PMC9820416 DOI: 10.3390/ijms24010481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
SARS-CoV-2 has led to a global pandemic of new crown pneumonia, which has had a tremendous impact on human society. Antibody drug therapy is one of the most effective way of combating SARS-CoV-2. In order to design potential antibody drugs with high affinity, we used antibody S309 from patients with SARS-CoV as the target antibody and RBD of S protein as the target antigen. Systems with RBD glycosylated and non-glycosylated were constructed to study the influence of glycosylation. From the results of molecular dynamics simulations, the steric effects of glycans on the surface of RBD plays a role of "wedge", which makes the L335-E340 region of RBD close to the CDR3 region of the heavy chain of antibody and increases the contact area between antigen and antibody. By mutating the key residues of antibody at the interaction interface, we found that the binding affinities of antibody mutants G103A, P28W and Y100W were all stronger than that of the wild-type, especially for the G103A mutant. G103A significantly reduces the distance between the binding region of L335-K356 in the antigen and P28-Y32 of heavy chain in the antibody through structural transition. Taken together, the antibody design method described in this work can provide theoretical guidance and a time-saving method for antibody drug design.
Collapse
|
3
|
Gül Ş. In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry. Turk J Biol 2021; 45:442-458. [PMID: 34803446 PMCID: PMC8573850 DOI: 10.3906/biy-2012-52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Despite COVID-19 turned into a pandemic, no approved drug for the treatment or globally available vaccine is out yet. In such a global emergency, drug repurposing approach that bypasses a costly and long-time demanding drug discovery process is an effective way in search of finding drugs for the COVID-19 treatment. Recent studies showed that SARS-CoV-2 uses neuropilin-1 (NRP1) for host entry. Here we took advantage of structural information of the NRP1 in complex with C-terminal of spike (S) protein of SARS-CoV-2 to identify drugs that may inhibit NRP1 and S protein interaction. U.S. Food and Drug Administration (FDA) approved drugs were screened using docking simulations. Among top drugs, well-tolerated drugs were selected for further analysis. Molecular dynamics (MD) simulations of drugs-NRP1 complexes were run for 100 ns to assess the persistency of binding. MM/GBSA calculations from MD simulations showed that eltrombopag, glimepiride, sitagliptin, dutasteride, and ergotamine stably and strongly bind to NRP1. In silico Alanine scanning analysis revealed that Tyr297, Trp301, and Tyr353 amino acids of NRP1 are critical for drug binding. Validating the effect of drugs analyzed in this paper by experimental studies and clinical trials will expedite the drug discovery process for COVID-19.
Collapse
Affiliation(s)
- Şeref Gül
- Department of Chemical and Biological Engineering, Koç University, İstanbul Turkey.,Biotechnology Division, Department of Biology, Faculty of Science, İstanbul University, İstanbul Turkey
| |
Collapse
|
4
|
Rao SJA, Shetty NP. Evolutionary selectivity of amino acid is inspired from the enhanced structural stability and flexibility of the folded protein. Life Sci 2021; 281:119774. [PMID: 34197884 DOI: 10.1016/j.lfs.2021.119774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
AIM The present study attempts to decipher the site-specific amino acid alterations at certain positions experiencing preferential selectivity and their effect on proteins' stability and flexibility. The study examines the selection preferences by considering pair-wise non-bonded interaction energies of adjacent and interacting amino acids present at the interacting site, along with their evolutionary history. MATERIALS AND METHODS For the study, variations in the interacting residues of spike protein (S-Protein) receptor-binding domain (RBD) of different coronaviruses were examined. The MD simulation trajectory analysis revealed that, though all the variants studied were structurally stable at their native and bound confirmations, the RBD of 2019-nCoV/SARS-CoV-2 was found to be more flexible and more dynamic. Furthermore, a noticeable change observed in the non-bonded interaction energies of the amino acids interacting with the receptor corroborated their selection at respective positions. KEY FINDINGS The conformational changes exerted by the altered amino acids could be the reason for a broader range of interacting receptors among the selected proteins. SIGNIFICANCE The results envisage a strong indication that the residue selection at certain positions is governed by a well-orchestrated feedback mechanism, which follows increased stability and flexibility in the folded structure compared to its evolutionary predecessor.
Collapse
Affiliation(s)
- S J Aditya Rao
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India.
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
5
|
Tsegay KB, Adeyemi CM, Gniffke EP, Sather DN, Walker JK, Smith SEP. A Repurposed Drug Screen Identifies Compounds That Inhibit the Binding of the COVID-19 Spike Protein to ACE2. Front Pharmacol 2021; 12:685308. [PMID: 34194331 PMCID: PMC8236845 DOI: 10.3389/fphar.2021.685308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2,701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding in a concentration-dependent manner, measured the IC50 of binding inhibition, and computationally modeled the docking of the best inhibitors to the Spike-ACE2 binding interface. The best candidates were Thiostrepton, Oxytocin, Nilotinib, and Hydroxycamptothecin with IC50's in the 4-9 μM range. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction, as well as identify several potential inhibitors of the Spike-ACE2 interaction.
Collapse
Affiliation(s)
- Kaleb B. Tsegay
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Christiana M. Adeyemi
- St. Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, United States
| | - Edward P. Gniffke
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - John K. Walker
- St. Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, United States
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University St. Louis, Seattle, WA, United States
| | - Stephen E. P. Smith
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Manček‐Keber M, Hafner‐Bratkovič I, Lainšček D, Benčina M, Govednik T, Orehek S, Plaper T, Jazbec V, Bergant V, Grass V, Pichlmair A, Jerala R. Disruption of disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB J 2021; 35:e21651. [PMID: 34004056 PMCID: PMC8206760 DOI: 10.1096/fj.202100560r] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.
Collapse
Affiliation(s)
- Mateja Manček‐Keber
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Iva Hafner‐Bratkovič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Duško Lainšček
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Mojca Benčina
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Tea Govednik
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sara Orehek
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Vid Jazbec
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Valter Bergant
- Immunopathology of Virus Infections LaboratoryInstitute of VirologyTechnical University of MunichMunichGermany
| | - Vincent Grass
- Immunopathology of Virus Infections LaboratoryInstitute of VirologyTechnical University of MunichMunichGermany
| | - Andreas Pichlmair
- Immunopathology of Virus Infections LaboratoryInstitute of VirologyTechnical University of MunichMunichGermany
| | - Roman Jerala
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| |
Collapse
|
7
|
Galvez J, Zanni R, Galvez-Llompart M, Benlloch JM. Macrolides May Prevent Severe Acute Respiratory Syndrome Coronavirus 2 Entry into Cells: A Quantitative Structure Activity Relationship Study and Experimental Validation. J Chem Inf Model 2021; 61:2016-2025. [PMID: 33734704 PMCID: PMC7986980 DOI: 10.1021/acs.jcim.0c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The global pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening the health and economic systems worldwide. Despite the enormous efforts of scientists and clinicians around the world, there is still no drug or vaccine available worldwide for the treatment and prevention of the infection. A rapid strategy for the identification of new treatments is based on repurposing existing clinically approved drugs that show antiviral activity against SARS-CoV-2 infection. In this study, after developing a quantitative structure activity relationship analysis based on molecular topology, several macrolide antibiotics are identified as promising SARS-CoV-2 spike protein inhibitors. To confirm the in silico results, the best candidates were tested against two human coronaviruses (i.e., 229E-GFP and SARS-CoV-2) in cell culture. Time-of-addition experiments and a surrogate model of viral cell entry were used to identify the steps in the virus life cycle inhibited by the compounds. Infection experiments demonstrated that azithromycin, clarithromycin, and lexithromycin reduce the intracellular accumulation of viral RNA and virus spread as well as prevent virus-induced cell death, by inhibiting the SARS-CoV-2 entry into cells. Even though the three macrolide antibiotics display a narrow antiviral activity window against SARS-CoV-2, it may be of interest to further investigate their effect on the viral spike protein and their potential in combination therapies for the coronavirus disease 19 early stage of infection.
Collapse
Affiliation(s)
- Jorge Galvez
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Riccardo Zanni
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Maria Galvez-Llompart
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
- Instituto de Tecnología
Química, UPV-CSIC, Universidad Politícnica
de Valencia, Valencia 46022,
Spain
| | - Jose Maria Benlloch
- Instituto de Instrumentación para
Imagen Molecular, Centro Mixto CSIC—Universitat
Politècnica de València, Valencia
46022, Spain
| |
Collapse
|
8
|
Khanna N, Pawar SV, Kumar A. A Review on Repurposed Drugs and Vaccine Trials for Combating SARS CoV-2. Curr Drug Res Rev 2021; 13:203-221. [PMID: 33719950 DOI: 10.2174/2589977513666210315094752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19), emerged in Wuhan, China in December 2019 and then spread worldwide rapidly. The records from World Health Organisation (WHO), Centres of Disease Control and Prevention (CDC) and Food and Drug Administration (FDA) backup the fact that no medications have proven to be completely effective for prevention or treatment of SARS-CoV-2. The clinical trials are underway for many repurposed, investigational drugs and vaccine candidates. BioNTech and Pfizer Inc, Moderna, Gamaleya institute and University of Oxford (collaboration with AstraZeneca) announced positive results in the Phase 3 interim analyses of vaccine trials in November 2020. Twelve countries have approved Pfizer- BioNTech COVID-19 vaccine for emergency use, as of December 2020. OBJECTIVE The objective was to summarize the repurposed/investigational drugs, their mechanism of action, and rationale for their use in COVID-19 treatment. The article also aimed to summarize the vaccine trials that are currently undergoing across the globe. METHODS In order to find the content for review, studies defining COVID-19 chronology, repurposed drugs along with their mode of action and potential vaccine trials were studied and summarized. RESULTS AND CONCLUSION The article summarizes potential therapeutic candidates (repurposed and investigational agents) for SARS-CoV-2, their possible mechanism of action and discussion related to their involvement in recent clinical trials. Innovative vaccine platform technologies are also highlighted that are recently being used in the vaccine production pipeline.
Collapse
Affiliation(s)
- Nikita Khanna
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|