1
|
Cheun-Arom T, Kitisripanya T, Nuntawong P, Sritularak B, Chuanasa T. Exploring anti-diabetic potential of compounds from roots of Dendrobium polyanthum Wall. ex Lindl. through inhibition of carbohydrate-digesting enzymes and glycation inhibitory activity. Heliyon 2024; 10:e34502. [PMID: 39114042 PMCID: PMC11305242 DOI: 10.1016/j.heliyon.2024.e34502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Eight compounds, including one anthraquinone, two bibenzyls, one phenanthrene, three dihydrophenanthrenes, and one flavonoid, were isolated from the roots of Dendrobium polyanthum Wall. ex Lindl. Among these, six compounds were investigated for inhibitory activities against alpha-glucosidase, alpha-amylase, and advanced glycation end products (AGEs) production. Additionally, molecular docking was conducted to analyze the interactions of the test compounds with alpha-glucosidase. Moscatin, the only isolated phenanthrene, displayed the strongest anti-alpha-glucosidase activity with an IC50 of 32.45 ± 1.04 μM, approximately 10-fold smaller than that of acarbose. Furthermore, moscatilin most strongly inhibited alpha-amylase and AGEs production with IC50 values of 256.94 ± 9.87 and 67.89 ± 9.42 μM, respectively. Molecular docking analysis revealed the effective binding of all substances to alpha-glucosidase with smaller lowest binding energy values than acarbose. Moscatin was selected for kinetics studies, and it was identified as a non-competitive inhibitor with approximately 9-fold greater inhibitory capability than acarbose. This study represents the first report on the phytochemical constituents and antidiabetic potential of compounds derived from the roots of D. polyanthum Wall. ex Lindl.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Poomraphie Nuntawong
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Gim J, Rubio PYM, Mohandoss S, Lee YR. Lewis Acid-Catalyzed Benzannulation of Vinyloxiranes with 3-Formylchromones or 1,4-Quinones for Diversely Functionalized 2-Hydroxybenzophenones, 1,4-Naphthoquinones, and Anthraquinones. J Org Chem 2024; 89:2538-2549. [PMID: 38302117 DOI: 10.1021/acs.joc.3c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A facile and convenient protocol for the regioselective construction of functionalized 2-hydroxybenzophenones is described. This protocol involves the Sc(OTf)3/BF3·OEt2-catalyzed benzannulation of 2-vinyloxirans with 3-formylchromone, which involves cascade in situ diene formation, [4 + 2] cycloaddition, elimination, and ring-opening strategies. Moreover, it provides an expedited synthetic pathway to access biologically intriguing 1,4-naphthoquinones and anthraquinones including vitamin K3 and tectoquinone. The synthesized compounds also hold potential for use as UV filters and show promise as chemosensors for Cu2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Jihwan Gim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Rossi R, Mainardi E, Vizzarri F, Corino C. Verbascoside-Rich Plant Extracts in Animal Nutrition. Antioxidants (Basel) 2023; 13:39. [PMID: 38247465 PMCID: PMC10812750 DOI: 10.3390/antiox13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the search for dietary intervention with natural products able to sustain animal health and decrease environmental impact, has raised the number of studies pertaining to the use of plants' secondary metabolites. In fact, in livestock, there is a clear relationship between the animals' antioxidant status and the onset of some diseases that negatively affect animal welfare, health, and productive performance. An interesting compound that belongs to the secondary metabolites family of plants, named phenylpropanoids, is verbascoside. The genus Verbascum, which includes more than 233 plant species, is the genus in which this compound was first identified, but it has also been found in other plant extracts. Verbascoside exhibits several properties such as antioxidant, anti-inflammatory, chemopreventive, and neuroprotective properties, that have been evaluated mainly in in vitro studies for human health. The present work reviews the literature on the dietary integration of plant extracts containing verbascoside in livestock. The effects of dietary plant extracts containing verbascoside on the productive performance, antioxidant status, blood parameters, and meat quality in several animal species were evaluated. The present data point out that dietary plant extracts containing verbascoside appear to be a favorable dietary intervention to enhance health, antioxidant status, and product quality in livestock.
Collapse
Affiliation(s)
- Raffaella Rossi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| | - Edda Mainardi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Carlo Corino
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| |
Collapse
|
4
|
Zhang M, Liu L, Zhao Y, Cao Y, Zhu Y, Han L, Yang Q, Wang Y, Wang C, Zhang H, Wang Y, Zhang J. Discovery and evaluation of active compounds from Xuanfei Baidu formula against COVID-19 via SARS-CoV-2 M pro. Chin Med 2023; 18:94. [PMID: 37528477 PMCID: PMC10394814 DOI: 10.1186/s13020-023-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) is still a widespread concern. As one of the effective traditional Chinese medicine (TCM) formulae, Xuanfei Baidu formula (XFBD) shows significant efficacy for treatment of COVID-19 patients. However, its antiviral active compounds and mechanism are still unclear. PURPOSE In this study, we explored the bioactive compounds of XFBD and its antiviral mechanism by integrating computational analysis and experimental testing. METHODS Focusing on the SARS-CoV-2 main protease (Mpro), as a key target in virus transcription and replication, the fluorescence resonance energy transfer (FRET) assay was built to screen out satisfactory natural inhibitors in XFBD. The surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were undertaken to verify the binding affinity of ligand-Mpro. Omicron BA.1.1 and BA.2.3 variants were used to evaluate the antiviral activity of the focused compounds in non-cytotoxicity concentrations. For introducing the molecular mechanism, computational modeling and NMR spectra were employed to characterize the ligand-binding modes and identify the ligand-binding site on Mpro. RESULTS From a library of 83 natural compounds, acteoside, licochalcone B, licochalcone D, linoleic acid, and physcion showed the satisfactory inhibition effects on Mpro with IC50 ranging from 1.93 to 42.96 µM, which were further verified by SPR. Showing the excellent binding affinity, acteoside was witnessed to gain valuable insights into the thermodynamic signatures by ITC and presented antiviral activity on Omicron BA.1.1 and BA.2.3 variants in vitro. The results revealed that acteoside inhibited Mpro via forming the hydrogen bond between 7-H of acteoside and Mpro. CONCLUSION Acteoside is regarded as a representative active natural compound in XFBD to inhibit replication of SARS-CoV-2, which provides the antiviral evidence and some insights into the identification of SARS-CoV-2 Mpro natural inhibitors.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Liting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Yipeng Cao
- National Supercomputer Center in Tianjin, Tianjin, 300457, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qi Yang
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Changjian Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Ministry of Education), Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Cheohen CFDAR, Esteves MEA, da Fonseca TS, Leal CM, Assis FDLF, Campos MF, Rebelo RS, Allonso D, Leitão GG, da Silva ML, Leitão SG. In silico screening of phenylethanoid glycosides, a class of pharmacologically active compounds as natural inhibitors of SARS-CoV-2 proteases. Comput Struct Biotechnol J 2023; 21:1461-1472. [PMID: 36817956 PMCID: PMC9920770 DOI: 10.1016/j.csbj.2023.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023] Open
Abstract
Since the advent of Covid-19, several natural products have been investigated regarding their in silico interactions with SARS-CoV-2 proteases - 3CLpro and PLpro, two of the most important pharmacological targets for antiviral development. Phenylethanoid glycosides (PG) are a class of natural products present in important medicinal plants and a drug containing this group of active ingredients has been successfully used in the treatment of Covid-19 in China. Thus, a dataset with 567 derivatives of this class was built from reviews published between 1994 and 2020, and their interaction against both SARS-CoV-2 proteases was investigated. The virtual screening was performed by filtering the PGs through the evaluation of scores based on the AutoDock Vina, GOLD/ChemPLP, and GOLD/GoldScore evaluation functions. The bRO5 pharmacokinetic parameters of the PGs ranked in the previous step were analyzed and their interaction with key amino acid residues of the 3CLpro and PLpro enzymes was evaluated. Ninety-eight compounds were identified by computational approaches against PLpro and 80 PGs against 3CLpro. Of these, four interacted with key catalytic residues of PLpro, which is an indicative of inhibitory activity, and three compounds interacted with catalytic key residues of 3CLpro. Of these, five PGs occur in plants of the Traditional Chinese Medicine (TCM), while two are components of plants/formulations currently used in the Covid-19 protocols in China. The data presented here show the potential of PGs as selective inhibitors of SARS-CoV-2 3CLpro and PLpro.
Collapse
Affiliation(s)
- Caio Felipe de Araujo Ribas Cheohen
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965045, Brazil
| | - Maria Eduarda Alves Esteves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ 21041361, Brazil
| | - Thamirys Silva da Fonseca
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Carla Monteiro Leal
- Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Fernanda de Lemos Fernandes Assis
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Mariana Freire Campos
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Raianne Soares Rebelo
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Diego Allonso
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Bl. H, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil
| | - Manuela Leal da Silva
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965045, Brazil,Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ 21041361, Brazil,Corresponding author at: Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências da Saúde, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ 27965045, Brazil.
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Programa de Pós-graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil,Corresponding author at: Faculdade de Farmácia, Centro de Ciências da Saúde, Bl. A 2º andar, Ilha do Fundão, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941902, Brazil.
| |
Collapse
|
6
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Xiao Y, Ren Q, Wu L. The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomed Pharmacother 2022; 153:113296. [PMID: 35724511 PMCID: PMC9212779 DOI: 10.1016/j.biopha.2022.113296] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Acteoside (AC), a phenylpropanoid glycoside isolated from many dicotyledonous plants, has been demonstrated various pharmacological activities, including anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, hepatoprotection, and anti-microorganism. However, AC has a poor bioavailability, which can be potentially improved by different strategies. The health-promoting characteristics of AC can be attributed to its mediation in many signaling pathways, such as MAPK, NF-κB, PI3K/AKT, TGFβ/Smad, and AMPK/mTOR. Interestingly, docking simulation study indicates that AC can be an effective candidate to inhibit the activity of SARS-CoV2 main protease and protect against COVID-19. Many clinical trials for AC have been investigated, and it shows great potentials in drug development.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
8
|
Nawrot J, Gornowicz-Porowska J, Budzianowski J, Nowak G, Schroeder G, Kurczewska J. Medicinal Herbs in the Relief of Neurological, Cardiovascular, and Respiratory Symptoms after COVID-19 Infection A Literature Review. Cells 2022; 11:1897. [PMID: 35741026 PMCID: PMC9220793 DOI: 10.3390/cells11121897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
COVID-19 infection causes complications, even in people who have had a mild course of the disease. The most dangerous seem to be neurological ailments: anxiety, depression, mixed anxiety-depressive (MAD) syndromes, and irreversible dementia. These conditions can negatively affect the respiratory system, circulatory system, and heart functioning. We believe that phytotherapy can be helpful in all of these conditions. Clinical trials confirm this possibility. The work presents plant materials (Valeriana officinalis, Melissa officinalis, Passiflora incarnata, Piper methysticum, Humulus lupulus, Ballota nigra, Hypericum perforatum, Rhodiola rosea, Lavandula officinalis, Paullinia cupana, Ginkgo biloba, Murraya koenigii, Crataegus monogyna and oxyacantha, Hedera helix, Polygala senega, Pelargonium sidoides, Lichen islandicus, Plantago lanceolata) and their dominant compounds (valeranon, valtrate, apigenin, citronellal, isovitexin, isoorientin, methysticin, humulone, farnesene, acteoside, hypericin, hyperforin, biapigenin, rosavidin, salidroside, linalool acetate, linalool, caffeine, ginkgolide, bilobalide, mihanimbine, epicatechin, hederacoside C,α-hederine, presegenin, umckalin, 6,7,8-trixydroxybenzopyranone disulfate, fumaroprotocetric acid, protolichesteric acid, aucubin, acteoside) responsible for their activity. It also shows the possibility of reducing post-COVID-19 neurological, respiratory, and cardiovascular complications, which can affect the functioning of the nervous system.
Collapse
Affiliation(s)
- Joanna Nawrot
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Jaromir Budzianowski
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Gerard Nowak
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (J.G.-P.); (J.B.); (G.N.)
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu 5, Poznanskiego 8, 61-614 Poznan, Poland; (G.S.); (J.K.)
| | - Joanna Kurczewska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu 5, Poznanskiego 8, 61-614 Poznan, Poland; (G.S.); (J.K.)
| |
Collapse
|
9
|
Al-Shuhaib MBS, Hashim HO, Al-Shuhaib JMB, Obayes DH. Artecanin of Laurus nobilis is a novel inhibitor of SARS-CoV-2 main protease with highly desirable druglikeness. J Biomol Struct Dyn 2022; 41:2355-2367. [PMID: 35067202 DOI: 10.1080/07391102.2022.2030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Main protease (Mpro) is a critical enzyme in the life cycle of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2). Due to its essential role in the maturation of the polyproteins, the necessity to inhibit Mpro is one of the essential means to prevent the outbreak of COVID-19. In this context, this study was conducted on the natural compounds of medicinal plants that are commonly available in the Middle East to find out the most potent one to inhibit Mpro with the best bioavailability and druglikeness properties. A total of 3392 compounds of sixty-six medicinal plants were retrieved from PubChem database and docked against Mpro. Thirty compounds with the highest docking scores with Mpro were chosen for further virtual screening. Variable druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened compounds, artecanin was predicted to exhibit the most favourable druglikeness potentials, accompanied by no predicted hepatoxicity, carcinogenicity, mutagenicity, and cytotoxicity. Molecular dynamics (MD) simulations showed that Mpro-artecanin complex exhibited comparable stability with that observed in the ligand-free Mpro. This study revealed for the first time that artecanin from Laurus nobilis provided a novel static and dynamic inhibition for Mpro with excellent safety, oral bioavailability, and pharmacokinetic profile. This study suggested the ability of artecanin to be used as a potential natural inhibitor that can be used to block or at least counteract the SARS-CoV-2 invasion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Hayder O. Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, Iraq
| | | | - Daniel H. Obayes
- Babylon Directorate of Education, Ministry of Education, Babil, Iraq
| |
Collapse
|
10
|
In Silico Screening of Potential Phytocompounds from Several Herbs against SARS-CoV-2 Indian Delta Variant B.1.617.2 to Inhibit the Spike Glycoprotein Trimer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In October 2020, the SARS-CoV-2 B.1.617 lineage was discovered in India. It has since become a prominent variant in several Indian regions and 156 countries, including the United States of America. The lineage B.1.617.2 is termed the delta variant, harboring diverse spike mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD), which may heighten its immune evasion potentiality and cause it to be more transmissible than other variants. As a result, it has sparked substantial scientific investigation into the development of effective vaccinations and anti-viral drugs. Several efforts have been made to examine ancient medicinal herbs known for their health benefits and immune-boosting action against SARS-CoV-2, including repurposing existing FDA-approved anti-viral drugs. No efficient anti-viral drugs are available against the SARS-CoV-2 Indian delta variant B.1.617.2. In this study, efforts were made to shed light on the potential of 603 phytocompounds from 22 plant species to inhibit the Indian delta variant B.1.617.2. We also compared these compounds with the standard drug ceftriaxone, which was already suggested as a beneficial drug in COVID-19 treatment; these compounds were compared with other FDA-approved drugs: remdesivir, chloroquine, hydroxy-chloroquine, lopinavir, and ritonavir. From the analysis, the identified phytocompounds acteoside (−7.3 kcal/mol) and verbascoside (−7.1 kcal/mol), from the plants Clerodendrum serratum and Houttuynia cordata, evidenced a strong inhibitory effect against the mutated NTD (MT-NTD). In addition, the phytocompounds kanzonol V (−6.8 kcal/mol), progeldanamycin (−6.4 kcal/mol), and rhodoxanthin (−7.5 kcal/mol), from the plant Houttuynia cordata, manifested significant prohibition against RBD. Nevertheless, the standard drug, ceftriaxone, signals less inhibitory effect against MT-NTD and RBD with binding affinities of −6.3 kcal/mol and −6.5 kcal/mol, respectively. In this study, we also emphasized the pharmacological properties of the plants, which contain the screened phytocompounds. Our research could be used as a lead for future drug design to develop anti-viral drugs, as well as for preening the Siddha formulation to control the Indian delta variant B.1.617.2 and other future SARS-CoV-2 variants.
Collapse
|
11
|
Kallingal A, Thachan Kundil V, Ayyolath A, Muringayil Joseph T, Kar Mahapatra D, Haponiuk JT, Variyar EJ. Identification of sustainable trypsin active-site inhibitors from Nigrospora sphaerica strain AVA-1. J Basic Microbiol 2021; 61:709-720. [PMID: 34228389 DOI: 10.1002/jobm.202100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Aravind Ayyolath
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Tomy Muringayil Joseph
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Józef T Haponiuk
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| |
Collapse
|
12
|
Abdizadeh R, Hadizadeh F, Abdizadeh T. In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2. Mol Divers 2021; 26:1053-1076. [PMID: 34213728 PMCID: PMC8251691 DOI: 10.1007/s11030-021-10230-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Abstract Coronavirus disease 2019 (COVID-19) is a pandemic viral disease caused by SARS-CoV-2 that generated serious damages for both the human population and the global economy. Therefore, it is currently considered as one of the most important global health problems of human societies and there is an urgent need for potent drugs or vaccines which can effectively combat this virus. The chymotrypsin-like protease (3CLpro) of SARS-CoV-2 plays a key role in the viral replication inside the host and thus is a promising drug target to design and develop effective antiviral drugs against SARS and other coronaviruses. This study evaluated some antiviral coumarin phytochemicals as potential inhibitors of coronaviruses 3CLpro by in silico approaches such as molecular docking, ADMET prediction, molecular dynamics simulation, and MM-PBSA binding energy calculation. Natural coumarin derivatives were docked to the 3CLpro of SARS-CoV-2 and for further investigation, docked to the 3CLpro of SARS-CoV and MERS-CoV. The docking scores of these natural compounds were compared with 3CLpro referenced inhibitors (ritonavir and lopinavir) and co-crystal inhibitor N3. Molecular docking studies suggested more than half of the coumarin phytochemicals had favorable interaction at the binding pocket of the coronaviruses 3CLpro and exhibited better binding affinities toward 3CLpro than ritonavir and lopinavir. Most antiviral phytochemicals interact strongly with one or both the catalytic dyad residues (His41 and Cys145) and the other key residues of SARS-CoV-2 main protease. Further, MD simulation and binding free energy calculations using MM-PBSA were carried out for three 3CLpro-coumarin complexes and 3CLpro-N3/lopinavir. The results confirmed that the 3CLpro-glycycoumarin, 3CLpro-oxypeucedanin hydrate, and 3CLpro-inophyllum P complexes were highly stable, experience fewer conformation fluctuations and share a similar degree of compactness. Also, the pharmacokinetics and drug-likeness studies showed good results for the selected coumarin phytochemicals.Therefore, the coumarin phytochemicals could be used as antiviral agents in the treatment of COVID-19 after further studies. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-021-10230-6.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, shahrekord, Iran.
| |
Collapse
|