1
|
Michalski M, Setny P. Molecular Mechanisms behind Conformational Transitions of the Influenza Virus Hemagglutinin Membrane Anchor. J Phys Chem B 2023; 127:9450-9460. [PMID: 37877534 PMCID: PMC10641832 DOI: 10.1021/acs.jpcb.3c05257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Membrane fusion is a fundamental process that is exploited by enveloped viruses to enter host cells. In the case of the influenza virus, fusion is facilitated by the trimeric viral hemagglutinin protein (HA). So far, major focus has been put on its N-terminal fusion peptides, which are directly responsible for fusion initiation. A growing body of evidence points also to a significant functional role of the HA C-terminal domain, which however remains incompletely understood. Our computational study aimed to elucidate the structural and functional interdependencies within the HA C-terminal region encompassing the transmembrane domain (TMD) and the cytoplasmic tail (CT). In particular, we were interested in the conformational shift of the TMD in response to varying cholesterol concentration in the viral membrane and in its modulation by the presence of CT. Using free-energy calculations based on atomistic molecular dynamics simulations, we characterized transitions between straight and tilted metastable TMD configurations under varying conditions. We found that the presence of CT is essential for achieving a stable, highly tilted TMD configuration. As we demonstrate, such a configuration of HA membrane anchor likely supports the tilting motion of its ectodomain, which needs to be executed during membrane fusion. This finding highlights the functional role of, so far, the relatively overlooked CT region.
Collapse
Affiliation(s)
- Michal Michalski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Poboinev VV, Khrustalev VV, Akunevich AA, Shalygo NV, Stojarov AN, Khrustaleva TA, Kordyukova LV. Peptide Models of the Cytoplasmic Tail of Influenza A/H1N1 Virus Hemagglutinin Expand Understanding its pH-Dependent Modes of Interaction with Matrix Protein M1. Protein J 2023:10.1007/s10930-023-10101-z. [PMID: 36952102 PMCID: PMC10034248 DOI: 10.1007/s10930-023-10101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Influenza A virus hemagglutinin (HA) is a major virus antigen. No cryo-electron microscopy or X-ray data can be obtained for the HA intraviral (cytoplasmic) domain (CT) post-translationally modified with long fatty acid residues bound to three highly conserved cysteines. We recently proposed a model of HA CT of Influenza A/H1N1 virus possessing an antiparallel beta structure based on the experimental secondary structure analysis of four 14-15 amino acid long synthetic peptides, corresponding to the HA CT sequence, with free or acetaminomethylated cysteines. To dispel doubts about possible non-specific "amyloid-like" aggregation of those synthetic peptides in phosphate buffer solution, we have determined the order of oligomers based on blue native gel electrophoresis, membrane filtration, fluorescence spectroscopy and molecular modeling approaches. We have found that unmodified peptides form only low molecular weight oligomers, while modified peptides form both oligomers of low order similar to those found for unmodified peptides and high order conglomerates, which however are not of beta-amyloid-like fold. This study confirms that the beta structure previously detected by circular dichroism spectroscopy analysis is more likely the result of intrinsic propensity of the HA CT amino acid sequence than the consequence of aggregation. The structures of low order oligomers of the synthetic peptides were used for in silico experiments on modeling of HA CT interactions with matrix protein M1 at physiological and acidic pH levels and revealed two different areas of binding. Finally, tripeptides capable of blocking interactions between HA CT and M1 were proposed.
Collapse
|
3
|
Carvalho SB, Silva RJS, Sousa MFQ, Peixoto C, Roldão A, Carrondo MJT, Alves PM. Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring. Front Bioeng Biotechnol 2022; 10:805176. [PMID: 35252128 PMCID: PMC8894879 DOI: 10.3389/fbioe.2022.805176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 01/22/2023] Open
Abstract
Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies — nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs’ thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90–115 nm for NTA and 129–141 nm for TRPS), surface charges (average of −20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization.
Collapse
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F. Q. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Paula M. Alves,
| |
Collapse
|
4
|
Kordyukova LV, Konarev PV, Fedorova NV, Shtykova EV, Ksenofontov AL, Loshkarev NA, Dadinova LA, Timofeeva TA, Abramchuk SS, Moiseenko AV, Baratova LA, Svergun DI, Batishchev OV. The Cytoplasmic Tail of Influenza A Virus Hemagglutinin and Membrane Lipid Composition Change the Mode of M1 Protein Association with the Lipid Bilayer. MEMBRANES 2021; 11:772. [PMID: 34677538 PMCID: PMC8541430 DOI: 10.3390/membranes11100772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Influenza A virus envelope contains lipid molecules of the host cell and three integral viral proteins: major hemagglutinin, neuraminidase, and minor M2 protein. Membrane-associated M1 matrix protein is thought to interact with the lipid bilayer and cytoplasmic domains of integral viral proteins to form infectious virus progeny. We used small-angle X-ray scattering (SAXS) and complementary techniques to analyze the interactions of different components of the viral envelope with M1 matrix protein. Small unilamellar liposomes composed of various mixtures of synthetic or "native" lipids extracted from Influenza A/Puerto Rico/8/34 (H1N1) virions as well as proteoliposomes built from the viral lipids and anchored peptides of integral viral proteins (mainly, hemagglutinin) were incubated with isolated M1 and measured using SAXS. The results imply that M1 interaction with phosphatidylserine leads to condensation of the lipid in the protein-contacting monolayer, thus resulting in formation of lipid tubules. This effect vanishes in the presence of the liquid-ordered (raft-forming) constituents (sphingomyelin and cholesterol) regardless of their proportion in the lipid bilayer. We also detected a specific role of the hemagglutinin anchoring peptides in ordering of viral lipid membrane into the raft-like one. These peptides stimulate the oligomerization of M1 on the membrane to form a viral scaffold for subsequent budding of the virion from the plasma membrane of the infected cell.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Petr V. Konarev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Nataliya V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Eleonora V. Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | - Nikita A. Loshkarev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Lubov A. Dadinova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (E.V.S.); (L.A.D.)
| | - Tatyana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia;
| | - Sergei S. Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Laboratory of Physical Chemistry of Polymers, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrei V. Moiseenko
- Laboratory of Electron Microscopy, Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Lyudmila A. Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.V.K.); (N.V.F.); (A.L.K.); (L.A.B.)
| | | | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|