1
|
Daniele-Silva A, Lucas Tenório CJ, Roberto da Costa Rodrigues J, Torres-Rêgo M, Cavalcanti FF, de Sousa Ferreira S, Pontes da Silva D, Assunção Ferreira MR, de Freitas Fernandes-Pedrosa M, Lira Soares LA. Anti-inflammatory and antiophidic effects of extract of Hymenaea eriogyne benth and structure-activity relationship prediction of the major markers in silico. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118619. [PMID: 39053713 DOI: 10.1016/j.jep.2024.118619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hymenaea eriogyne Benth (Fabaceae) is popularly known as "Jatobá". Despite its use in folk medicine to treat inflammatory disorders, there are no descriptions that show its anti-inflammatory potential. AIM OF THE STUDY In this sense, this study aimed to evaluate the anti-inflammatory and antivenom action of bark and leaves extract of H. eriogyne. MATERIALS AND METHODS The in vivo anti-inflammatory activity was conducted by carrageenan-induced paw edema and zymosan-induced air pouch models, evaluating the edematogenic effect, leukocyte migration, protein concentration, levels of pro-inflammatory cytokines, malondialdehyde (MDA) and myeloperoxidase (MPO) activity. The antivenom potential was investigated in vitro on the enzymatic action (proteolytic, phospholipase and hyaluronidase) of Bothrops brazili and B. leucurus venom, as well as in vivo on the paw edema model induced by B. leucurus. Furthermore, the influence of its markers (astilbin and rutin) on MPO activity was investigated in silico. For molecular docking, AutodockVina, Biovia Discovery Studio, and Chimera 1.16 software were used. RESULTS The extracts and bark and leaves of H. eriogyne revealed a high anti-inflammatory effect, with a reduction in all inflammatory parameters evaluated. The bark extract showed superior results when compared to the leaf extract, suggesting the influence of the astilbin concentration, higher in the bark, on the anti-inflammatory action. In addition, only the H. eriogyne bark extract was able to reduce MDA, indicating an associated antioxidant effect. Regarding the in vitro antivenom action, the extracts (bark and leaves) revealed the ability to inhibit the proteolytic, phospholipase and hyaluronidase action of both bothropic venom, with a greater effect against B. leucurus venom. In vivo, extracts from the bark and leaves of H. eriogyne (50-200 mg/kg) showed antiedematogenic activity, reducing the release of MPO and pro-inflammatory cytokines, indicating the presence of bioactive components useful in controlling the inflammatory process induced by the venom. In the in silico assays, astilbin and rutin showed reversible interactions of 9 possible positions and orientations towards MPO, with affinities of -9.5 and -10.4 kcal/mol and interactions with Phe407, Gln91, His95 and Arg239, important active pockets of MPO. Rutin demonstrated more effective types of interactions with MPO. CONCLUSION This approach reveals for the first time the anti-inflammatory action of H. eriogyne bark and leaf extracts in vivo, as well as its antiophidic potential. Moreover, the distinct effect of pharmacogens as antioxidant agents and distinct effect of astilbin and rutin under MPO sheds light on the different anti-inflammatory mechanisms of bioactive compounds present in H. eriogyne extracts, with high potential for the prospection of new pharmacological agents.
Collapse
Affiliation(s)
- Alessandra Daniele-Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande Do Norte, Brazil
| | - Camylla Janiele Lucas Tenório
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil; Graduate Program of Therapeutic Innovation, Center for Biosciences, Federal University of Pernambuco, Brazil
| | | | - Manoela Torres-Rêgo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande Do Norte, Brazil
| | - Felipe França Cavalcanti
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande Do Norte, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande Do Norte, Brazil
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande Do Norte, Brazil
| | | | | | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
2
|
Setlur AS, Karunakaran C, Anusha V, Shendre AA, Uttarkar A, Niranjan V, Ashok Kumar HG, Kusanur R. Investigating the Molecular Interactions of Quinoline Derivatives for Antibacterial Activity Against Bacillus subtilis: Computational Biology and In Vitro Study Interpretations. Mol Biotechnol 2024; 66:3252-3273. [PMID: 37930509 DOI: 10.1007/s12033-023-00933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Bacterial infections are evolving and one of the chief problems is emergence and prevalence of antibacterial resistance. Moreover, certain strains of Bacillus subtilis have become resistant to several antibiotics. To counteract this menace, the present work aimed to comprehend the antibacterial activity of synthesized two quinoline derivatives against Bacillus subtilis. Toxicity predictions via Protox II, SwissADME and T.E.S.T (Toxicity Estimation Software Tool) revealed that these derivatives were non-toxic and had little to no adverse effects. Molecular docking studies carried out in Schrodinger with two quinoline derivatives (referred Q1 and Q2) docked against selected target proteins (PDB IDs: 2VAM and1FSE) of B. subtilis demonstrated ideal binding energies (2VAM-Q1: - 4.63 kcal/mol and 2VAM-Q2: - 4.46 kcal/mol, and 1FSE-Q1: - 3.51 kcal/mol, 1FSE-Q2: - 6.34 kcal/mol). These complexes were simulated at 100 ns and the outcomes revealed their stability with slight conformational changes. Anti-microbial assay via disc diffusion method revealed zones of inhibition showing that B. subtilis was inhibited by both Q1 and Q2, with Q2 performing slightly better than Q1, pointing towards its effectiveness against this organism and necessitating further study on other bacteria in prospective studies. Thus, this study demonstrates that our novel quinoline derivatives exhibit antibacterial properties against Bacillus subtilis and can act as potent anti-bacterials.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | | | - V Anusha
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Aditya A Shendre
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Akshay Uttarkar
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Vidya Niranjan
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - H G Ashok Kumar
- Department of Biotechnology, R.V College of Engineering, Bangalore, 560059, India
| | - Raviraj Kusanur
- Department of Chemistry, R.V. College of Engineering, Bangalore, 560059, India.
| |
Collapse
|
3
|
de Oliveira LHD, Cruz JN, Dos Santos CBR, de Melo EB. Multivariate QSAR, similarity search and ADMET studies based in a set of methylamine derivatives described as dopamine transporter inhibitors. Mol Divers 2024; 28:2931-2946. [PMID: 37670118 DOI: 10.1007/s11030-023-10724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023]
Abstract
The dopamine transporter (DAT), responsible for the regulation of dopaminergic neurotransmission, is implicated in the etiology of several neuropsychiatric disorders which, in turn, have contributed to high rates of disability and numerous deaths in recent years, significantly impacting the global health system. Although the research for new drugs for the treatment of neuropsychiatric disorders has evolved in recent years, the availability of DAT-selective drugs that do not generate the same psychostimulant effects observed in drugs of abuse remains scarce. Therefore, we performed a QSAR study based on a dataset of 36 methylamine derivatives described as DAT inhibitors. The model was obtained based only in descriptors derived from 2D structures, and it was validated and generated satisfactory results considering the metrics used for internal and external validation. Subsequently, a virtual screening step also based on 2D similarity was performed, where it was possible to identify a total of 1157 compounds. After a series of reductions of the set using toxicity filters, applicability domain evaluation, and pharmacokinetic properties in silico assessment, seven hit compounds were selected as the most promising to be used, in future studies, as new scaffolds for the development of new DAT inhibitors.
Collapse
Affiliation(s)
- Luiz Henrique Dias de Oliveira
- Theorical Medicinal and Environmental Chemistry Laboratory (LQMAT), Department of Pharmacy, Western Paraná State University (UNIOESTE), 2069 Universitária St., Cascavel, PR, 85819-110, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, AP, 68902-280, Brazil
| | - Cleydson Breno Rodrigues Dos Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, AP, 68902-280, Brazil
| | - Eduardo Borges de Melo
- Theorical Medicinal and Environmental Chemistry Laboratory (LQMAT), Department of Pharmacy, Western Paraná State University (UNIOESTE), 2069 Universitária St., Cascavel, PR, 85819-110, Brazil.
| |
Collapse
|
4
|
Tallapalli PS, Reddy YD, Yaraguppi DA, Matangi SP, Challa RR, Vallamkonda B, Ahmad SF, Al-Mazroua HA, Rudrapal M, Dintakurthi Sree Naga Bala Krishna P, Pasala PK. In Silico and In Vivo Studies of β-Sitosterol Nanoparticles as a Potential Therapy for Isoprenaline-Induced Cognitive Impairment in Myocardial Infarction, Targeting Myeloperoxidase. Pharmaceuticals (Basel) 2024; 17:1093. [PMID: 39204198 PMCID: PMC11359034 DOI: 10.3390/ph17081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVE This study aimed to compare the effects of β-sitosterol nanoparticles (BETNs) and β-sitosterol (BET) on cognitive impairment, oxidative stress, and inflammation in a myocardial infarction (MI) rat model using in silico and in vivo methods. METHODS β-Sitosterol (BET) and myeloperoxidase (MPO) ligand-receptor binding affinities were evaluated using Autodock Vina for docking and Gromacs for dynamics simulations. BET nanoparticles, prepared via solvent evaporation, had their size confirmed by a nanoparticle analyzer. ISO-induced cognitive impairment in rats was assessed through Morris water maze and Cook's pole climbing tests. Oxidative stress, inflammation, and cardiac injury were evaluated by measuring GSH, SOD, MDA, MPO, CkMB, LDH, lipid profiles, and ECGs. Histopathology of the CA1 hippocampus and myocardial tissue was performed using H&E staining. RESULTS In silico analyses revealed strong binding affinities between BET and MPO, suggesting BET's potential anti-inflammatory effect. BETN (119.6 ± 42.6 nm; PDI: 0.809) significantly improved MI-induced cognitive dysfunction in rats (p < 0.001 ***), increased hippocampal GSH (p < 0.01 **) and SOD (p < 0.01 **) levels, and decreased hippocampal MDA (p < 0.05 *) and MPO levels (p < 0.01 **). BETNs also elevated cardiac GSH (p < 0.01 **) and SOD (p < 0.01 **) levels and reduced cardiac MPO (p < 0.01 **), CkMB (p < 0.001 **) and LDH (p < 0.001 **) levels. It restored lipid profiles, normalized ECG patterns, and improved histology in the hippocampal CA1 region and myocardium. CONCLUSIONS Compared with BET treatment, BETNs were more effective in improving cognitive impairment, oxidative damage, and inflammation in MI rats, suggesting its potential in treating cognitive dysfunction and associated pathological changes in MI.
Collapse
Affiliation(s)
- Partha Saradhi Tallapalli
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India; (P.S.T.); (Y.D.R.)
| | - Yennam Dastagiri Reddy
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India; (P.S.T.); (Y.D.R.)
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli 580020, Karnataka, India;
| | - Surya Prabha Matangi
- Department of Pharmaceutics, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research, Guntur 522201, Andhra Pradesh, India; (S.P.M.); (M.R.)
| | - Ranadheer Reddy Challa
- Department of Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA 19060, USA;
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Analysis, Odin Pharmaceutical LLC, Somerset, NJ 08873, USA;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (H.A.A.-M.)
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (H.A.A.-M.)
| | - Mithun Rudrapal
- Department of Pharmaceutics, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research, Guntur 522201, Andhra Pradesh, India; (S.P.M.); (M.R.)
| | | | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu 515721, Andhra Pradesh, India
| |
Collapse
|
5
|
Pasala PK, Raghupathi NK, Yaraguppi DA, Challa RR, Vallamkonda B, Ahmad SF, Chennamsetty Y, Kumari PK, DSNBK P. Potential preventative impact of aloe-emodin nanoparticles on cerebral stroke-associated myocardial injury by targeting myeloperoxidase: In supporting with In silico and In vivo studies. Heliyon 2024; 10:e33154. [PMID: 39022073 PMCID: PMC11253067 DOI: 10.1016/j.heliyon.2024.e33154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The present study examined the potential neuroprotective effects of aloe-emodin (AE) nanoparticles on the cerebral stroke-associated target protein myeloperoxidase (MPO). We investigated the binding interactions between AE and MPO through molecular docking and molecular dynamics simulations. Molecular docking results indicated that AE exhibited a binding energy of -6.9 kcal/mol, whereas it was -7.7 kcal/mol for 2-{[3,5-bis(trifluoromethyl)benzyl]amino}-n-hydroxy-6-oxo-1,6-dihydropyrimidine-5-carboxamide (CCl). Furthermore, molecular dynamics studies demonstrated that AE possesses a stronger binding affinity (-57.137 ± 13.198 kJ/mol) than does CCl (-22.793 ± 30.727 kJ/mol), suggesting that AE has a more substantial inhibitory effect on MPO than does CCl. Despite the therapeutic potential of AE for neurodegenerative disorders, its bioavailability is limited within the body. A proposed hypothesis to enhance the bioavailability of AE is its conversion into aloe-emodin nanoparticles (AENP). The AENPs synthesized through a fabrication method were spherical with a consistent diameter of 104.4 ± 7.9 nm and a polydispersity index ranging from 0.525 to 0.586. In rats experiencing cerebral stroke, there was a notable increase in cerebral infarction size; abnormalities in electrocardiogram (ECG) and electroencephalogram (EEG) patterns; a decrease in brain and cardiac antioxidant activities; and an increase in myeloperoxidase levels compared to those in normal rats. Compared with AE treatment, AENP treatment significantly ameliorated cerebral infarction, normalized ECG and EEG patterns, enhanced brain and cardiac antioxidant activities, and reduced MPO levels in stroke rats. Histopathological evaluations revealed pronounced alterations in the rat hippocampus, with pyknotic nuclei, disarray and loosely packed cells, deterioration of cardiac muscle fibers, and extensive damage to cardiac myocytes, in contrast to those in normal rats. AENP treatment mitigated these pathological changes more effectively than AE treatment in both brain and cardiac cells. These findings support that AENP provides considerable protection against stroke-associated myocardial infarction.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh, 515721, India
| | - Niranjan Kumar Raghupathi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli, Karnataka, 580031, India
| | - Ranadheer Reddy Challa
- Department of Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, 19060, USA
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Analysis, Odin Pharmaceutical LLC, Somerset, NJ, 08873, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeswanth Chennamsetty
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - P.V. Kamala Kumari
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, India
| | - Prasanth DSNBK
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| |
Collapse
|
6
|
Balasundaram A, Ramireddy S, S UK, D TK, Tayubi IA, Zayed H, C GPD. A new horizon in the phosphorylated sites of AGA: the structural impact of C163S mutation in aspartylglucosaminuria through molecular dynamics simulation. J Biomol Struct Dyn 2024; 42:4313-4324. [PMID: 37334725 DOI: 10.1080/07391102.2023.2220798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by insufficient aspartylglucosaminidase (AGA) activity leading to chronic neurodegeneration. We utilized the PhosphoSitePlus tool to identify the AGA protein's phosphorylation sites. The phosphorylation was induced on the specific residue of the three-dimensional AGA protein, and the structural changes upon phosphorylation were studied via molecular dynamics simulation. Furthermore, the structural behaviour of C163S mutation and C163S mutation with adjacent phosphorylation was investigated. We have examined the structural impact of phosphorylated forms and C163S mutation in AGA. Molecular dynamics simulations (200 ns) exposed patterns of deviation, fluctuation, and change in compactness of Y178 phosphorylated AGA protein (Y178-p), T215 phosphorylated AGA protein (T215-p), T324 phosphorylated AGA protein (T324-p), C163S mutant AGA protein (C163S), and C163S mutation with Y178 phosphorylated AGA protein (C163S-Y178-p). Y178-p, T215-p, and C163S mutation demonstrated an increase in intramolecular hydrogen bonds, leading to greater compactness of the AGA forms. Principle component analysis (PCA) and Gibbs free energy of the phosphorylated/C163S mutation structures exhibit transition in motion/orientation than Wild type (WT). T215-p may be more dominant among these than the other studied phosphorylated forms. It might contribute to hydrolyzing L-asparagine functioning as an asparaginase, thereby regulating neurotransmitter activity. This study revealed structural insights into the phosphorylation of Y178, T215, and T324 in AGA protein. Additionally, it exposed the structural changes of the C163S mutation and C163S-Y178-p of AGA protein. This research will shed light on a better understanding of AGA's phosphorylated mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sriroopreddy Ramireddy
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Iftikhar Aslam Tayubi
- Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Song J, Zhang B, Zhang H, Cheng W, Liu P, Kang J. Quantitative Proteomics Combined with Network Pharmacology Analysis Unveils the Biological Basis of Schisandrin B in Treating Diabetic Nephropathy. Comb Chem High Throughput Screen 2024; 27:284-297. [PMID: 37151069 DOI: 10.2174/1386207326666230505111903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes. Schisandrin B (Sch) is a natural pharmaceutical monomer that was shown to prevent kidney damage caused by diabetes and restore its function. However, there is still a lack of comprehensive and systematic understanding of the mechanism of Sch treatment in DN. OBJECTIVE We aim to provide a systematic overview of the mechanisms of Sch in multiple pathways to treat DN in rats. METHODS Streptozocin was used to build a DN rat model, which was further treated with Sch. The possible mechanism of Sch protective effects against DN was predicted using network pharmacology and was verified by quantitative proteomics analysis. RESULTS High dose Sch treatment significantly downregulated fasting blood glucose, creatinine, blood urea nitrogen, and urinary protein levels and reduced collagen deposition in the glomeruli and tubule-interstitium of DN rats. The activities of superoxide dismutase (SOD) and plasma glutathione peroxidase (GSH-Px) in the kidney of DN rats significantly increased with Sch treatment. In addition, the levels of IL-6, IL-1β, and TNF-α were significantly reduced in DN rats treated with Sch. 11 proteins that target both Sch and DN were enriched in pathways such as MAPK signaling, PI3K-Akt signaling, renal cell carcinoma, gap junction, endocrine resistance, and TNF signaling. Furthermore, quantitative proteomics showed that Xaf1 was downregulated in the model vs. control group and upregulated in the Sch-treated vs. model group. Five proteins, Crb3, Tspan4, Wdr45, Zfp512, and Tmigd1, were found to be upregulated in the model vs. control group and downregulated in the Sch vs. model group. Three intersected proteins between the network pharmacology prediction and proteomics results, Crb3, Xaf1, and Tspan4, were identified. CONCLUSION Sch functions by relieving oxidative stress and the inflammatory response by regulating Crb3, Xaf1, and Tspan4 protein expression levels to treat DN disease.
Collapse
Affiliation(s)
- Jianying Song
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Bo Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, People's Republic of China
| | - Wenbo Cheng
- Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis, Tianjin, 300399, People's Republic of China
| | - Peiyuan Liu
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Jun Kang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| |
Collapse
|
8
|
Zhang J, Xue S, Chen H, Jiang H, Gao P, Lu L, Wang Q. Exploring the Mechanism of Si-miao-yong-an Decoction in the Treatment of Coronary Heart Disease based on Network Pharmacology and Experimental Verification. Comb Chem High Throughput Screen 2024; 27:57-68. [PMID: 37403397 DOI: 10.2174/1386207326666230703150803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND To investigate the active ingredients and the mechanisms of Si-miaoyong- an Decoction (SMYA) in the treatment of coronary heart disease (CHD) by using network pharmacology, molecular docking technology, and in vitro validation. METHODS Through the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Uniprot database, GeneCards database, and DAVID database, we explored the core compounds, core targets and signal pathways of the effective compounds of SMYA in the treatment of CHD. Molecular docking technology was applied to evaluate the interactions between active compounds and key targets. The hypoxia-reoxygenation H9C2 cell model was applied to carry out in vitro verification experiments. A total of 109 active ingredients and 242 potential targets were screened from SMYA. A total of 1491 CHD-related targets were retrieved through the Gene- Cards database and 155 overlapping CHD-related SMYA targets were obtained. PPI network topology analysis indicated that the core targets of SMYA in the treatment of CHD include interleukin- 6 (IL-6), tumor suppressor gene (TP53), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), phosphorylated protein kinase (AKT1) and mitogen-activated protein kinase (MAPK). KEGG enrichment analysis demonstrated that SMYA could regulate Pathways in cancer, phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway, hypoxiainducible factor-1(HIF-1) signaling pathway, VEGF signaling pathway, etc. Results: Molecular docking showed that quercetin had a significant binding activity with VEGFA and AKT1. In vitro studies verified that quercetin, the major effective component of SMYA, has a protective effect on the cell injury model of cardiomyocytes, partially by up-regulating expressions of phosphorylated AKT1 and VEGFA. CONCLUSION SMYA has multiple components and treats CHD by acting on multiple targets. Quercetin is one of its key ingredients and may protect against CHD by regulating AKT/VEGFA pathway.
Collapse
Affiliation(s)
- Jingmei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siming Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengrong Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, 100029, China
| |
Collapse
|
9
|
Fu Q, Gao H, Liu K, Su J, Zhang J, Guo X, Yang F. Identification of circRNA-miRNA-mRNA Network Regulated by Hsp90 in Human Melanoma A375 Cells. Comb Chem High Throughput Screen 2024; 27:307-316. [PMID: 37303182 DOI: 10.2174/1386207326666230609145247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Melanoma is the deadliest form of skin cancer. Heat shock protein 90 (Hsp90) is highly expressed in human melanoma. Hsp90 inhibitors can suppress the growth of human melanoma A375 cells; however, the underlying mechanism remains unclear. METHODS A375 cells were treated with SNX-2112, an Hsp90 inhibitor, for 48 h, and wholetranscriptome sequencing was performed. RESULTS A total of 2,528 differentially expressed genes were identified, including 895 upregulated and 1,633 downregulated genes. Pathway enrichment analyses of differentially expressed mRNAs identified the extracellular matrix (ECM)-receptor interaction pathway as the most significantly enriched pathway. The ECM receptor family mainly comprises integrins (ITGs) and collagens (COLs), wherein ITGs function as the major cell receptors for COLs. 19 upregulated miRNAs were found to interact with 6 downregulated ITG genes and 8 upregulated miRNAs were found to interact with 3 downregulated COL genes. 9 differentially expressed circRNAs in SNX-2112- treated A375 cells were identified as targets of the ITG- and COL-related miRNAs. Based on the differentially expressed circRNAs, miRNAs, and mRNAs, ITGs- and COL-based circRNAmiRNA- mRNA regulatory networks were mapped, revealing a novel regulatory mechanism of Hsp90-regulated melanoma. CONCLUSION Targeting the ITG-COL network is a promising approach to the treatment of melanoma.
Collapse
Affiliation(s)
- Qiang Fu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Hengyuan Gao
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianglin Zhang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Candidate Branch of the National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China
| | - Xiaojing Guo
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Fang Yang
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Candidate Branch of the National Clinical Research Center for Skin Diseases, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
10
|
Lin H, Du X, Wang Y, Cai C, Gao J, Xiang H, Pan F. The Potential Mechanisms of Qufeng Zhitong Capsule against Rheumatoid Arthritis Based on Network Pharmacology and In Vitro Experiments. Crit Rev Immunol 2024; 44:1-16. [PMID: 37947068 DOI: 10.1615/critrevimmunol.2023050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Qufeng Zhitong capsule (QFZTC) is a traditional Chinese herbal formula with potential therapeutic efficacy in rheumatoid arthritis (RA). This study seeks to clarify the potential effects and mechanisms of QFZTC against RA. Active compounds and targets of QFZTC were retrieved from the Herbal Ingredients' Targets (HIT), Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Traditional Chinese Medicine Integrated Database (TCMID) databases. RA-related targets were searched on GeneCards and DisGeNET databases. Protein-protein interaction (PPI) network was established using the STRING database. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment analyses were performed on hub targets. Molecular docking was conducted on hub targets and active compounds. High-performance liquid chromatography (HPLC) was applied to characterize the active compounds in QFZTC. RA-fibroblast like synoviocytes (RA-FLSs) were cultured and treated by QFZTC-containing serum, in which proinflammatory cytokines and hub targets were detected. Cell viability was determined by cell counting kit-8 (CCK-8) assay. A total of 360 active compounds and 445 potential targets are identified for QFZTC against RA. Protein-protein interaction (PPI) network determined five hub targets, interleukin 6 (IL6), IL1B, VEGFA, JUN, and tumor necrosis factor (TNF). GO and KEGG analyses revealed that the MAPK pathway may be a critical signaling in QFZTC treating RA. Molecular docking showed that luteolin, kaempferol, and myricetin has good affinity with TNF, and they were identified by HPLC. In vitro experiments confirmed that QFZTC restrained the cell viability and inflammation in RA. This study revealed the active compounds and molecular targets for QFZTC treating RA. QFZTC is a promising drug and ameliorates RA by inhibiting inflammatory response.
Collapse
Affiliation(s)
- Haili Lin
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Xiaokang Du
- Wenzhou Medical University, Wenzhou 325035, China
| | - Yilu Wang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Chengsong Cai
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Jin Gao
- Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Haiyan Xiang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Feng Pan
- Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| |
Collapse
|
11
|
Liu C, Pang L, Wang L, Zhang L, Ma D, Chen J, Nie G. A Pharmacotherapeutic Approaches for Managing Labour Pain Using Synthetic Drugs and Natural Therapies. Comb Chem High Throughput Screen 2024; 27:1276-1285. [PMID: 37464818 DOI: 10.2174/1386207326666230718144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
The birth of a child is a critical and potentially traumatic experience for women, entailing multiple physiological and psychosocial changes. The psychological effects of childbirth pain can have both immediate and long-term effects on the mother's health and her bond with her child. Many studies investigated the different ranges of synthetic drugs available for pain control in labour, inclusive of neuraxial analgesics, inhaled analgesics, and various opioids. The inadequate efficacy and unfavourable side effects of these synthetic drugs prevent appropriate pharmacotherapy, resulting in a quest for natural therapies for reducing labour pain. Herbal therapies (aromatherapy) using several essential oils obtained from various natural plants are another alternative that calms and manages the mind and body through aromatic compounds that have neurological and physiological effects. The review discussed the safety profile of various synthetic drugs with their dosage information and also deliberated on the mechanism and safety profile of various natural plants that are used in aromatherapy. The review also briefly highlighted the other non-pharmacological miscellaneous techniques such as TENS, hypnosis, immersion in water, acupuncture, massage, and different other tactics that aim to assist women in coping with pain in labour.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Obstetrics, Dezhou Maternity and Child Health Care Hospital, Dezhou, 253000, China
| | - Liyan Pang
- Department of Obstetrics, Dezhou Maternity and Child Health Care Hospital, Dezhou, 253000, China
| | - Lijuan Wang
- Department of Obstetrics, Laoling People's Hospital, Dezhou City, 253600, China
| | - Lili Zhang
- Department of Obstetrics, Laoling People's Hospital, Dezhou City, 253600, China
| | - Dandan Ma
- Department of Obstetrics, Dezhou Maternity and Child Health Care Hospital, Dezhou, 253000, China
| | - Jing Chen
- Department of Obstetrics, Dezhou Maternity and Child Health Care Hospital, Dezhou, 253000, China
| | - Guimei Nie
- Department of Obstetrics and Gynecology, Jiuquan City People's Hospital, Jiuquan, Gansu, 735000, China
| |
Collapse
|
12
|
Zhou H, Fu N, Tian Y, Zhang N, Fan Q, Zeng F, Wang Y, Bai G, Chen B. Transcriptome Sequencing of Gingival Tissues from Impacted Third Molars Patients Reveals the Alterations of Gene Expression. Comb Chem High Throughput Screen 2024; 27:2350-2365. [PMID: 38178683 DOI: 10.2174/0113862073256803231114095626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The removal of impacted third molars by surgery may occur with a series of complications, whereas limited information about the postoperative pathogenesis is available. The objective of this study is to identify changes in gene expression after flap surgical removal of impacted third molars and provide potential information to reduce postoperative complications. METHODS The gingival tissues of twenty patients with flap surgical removal of impacted third molars and twenty healthy volunteers were collected for gene expression testing. The collected gingival tissues were used RNA sequencing technology and quantitative real-time PCR validation was performed. DEG was mapped to protein databases such as GO and KEGG for functional annotation and, based on annotation information, for mining of differential expression genes in patients with mpacted third molars. RESULTS A total of 555 genes were differentially expressed. Among the top up-regulated genes, HLA-DRB4, CCL20, and CXCL8 were strongly associated with immune response and signal transduction. Among the top down-regulated genes, SPRR2B, CLDN17, LCE3D and LCE3E were related to keratinocyte differentiation, IFITM5, and BGLAP were related to bone mineralization, UGT2B17 is associated with susceptibility to osteoporosis. KEGG results showed that the DEGs were related to multiple disease-related pathways. CONCLUSION This first transcriptome analysis of gingival tissues from patients with surgical removal of impacted third molars provides new insights into postoperative genetic changes. The results may establish a basis for future research on minimizing the incidence of complications after flap-treated third molars.
Collapse
Affiliation(s)
- Haolin Zhou
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nanqing Fu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yuan Tian
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Nini Zhang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Qin Fan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fengjiao Zeng
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yueyue Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Guohui Bai
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bin Chen
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| |
Collapse
|
13
|
Halder D, Das S, R S J, Joseph A. Role of multi-targeted bioactive natural molecules and their derivatives in the treatment of Alzheimer's disease: an insight into structure-activity relationship. J Biomol Struct Dyn 2023; 41:11286-11323. [PMID: 36579430 DOI: 10.1080/07391102.2022.2158136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder involving cognitive dysfunction like short-term memory and behavioral changes as the disease progresses due to other unaltered physiological factors. The solution for this problem is Multi-targeted Drugs (MTDs), which can affect multiple determinants to realize the multifunctional effects. Acetylcholinesterase (AChE) inhibitors donepezil, rivastigmine, galantamine, and N-methyl-D-aspartate (NMDA) receptor antagonist memantine are FDA-approved drugs used to treat AD symptomatically. The key objective of this review is to understand multitargeted bioactive natural molecules that could be considered as leads for further development as effective drugs for treating AD, along with understanding its pharmacology and structure-activity relationship (SAR). Understanding the molecular mechanism of the AD pathophysiology, the role of existing drugs, treatment of AD via amyloid beta (Aβ) plaque, and neurofibrillary tangle (NFT) inhibition by natural bioactive molecules were also discussed in the review. The current quest and recent advancements with natural bioactive compounds like physostigmine, resveratrol, curcumin, and catechins, along with the study of in silico SAR, were reported in the present study. This review summarises the structural properties required for bioactive natural molecules to show anti-Alzheimer's activity by emphasizing on SAR of several bioactive natural molecules targeting various AD pathologies, their key molecular interactions that are critical for target specificity, their role as multitargeted ligands, used with adjunctive therapy for AD followed by related US patents granted recently. This article highlights the significance of the structural features of natural bioactive molecules in the treatment of AD and establishes a connection between them.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeyaprakash R S
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Ribeiro LAF, Dos Santos IBF, Ferraz CG, de Souza-Neta LC, Silva VR, Santos LDS, Bezerra DP, Soares MBP, Zambotti-Villela L, Colepicolo P, Ferreira AG, Araújo FM, Ribeiro PR. Bioactive compounds from Vellozia pyrantha A.A.Conc: A metabolomics and multivariate statistical analysis approach. Fitoterapia 2023; 171:105686. [PMID: 37748714 DOI: 10.1016/j.fitote.2023.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
The chemical composition of V. pyrantha resin (VpR) and fractions (VpFr1-7 and VpWS) were assessed by LC-MS and NMR. Twenty-eight metabolites were identified, including 16 diterpenoids, seven nor-diterpenoids, one fatty acid, one bis-diterpenoid, one steroid, one flavonoid, and one triterpenoid. The pharmacological potential of VpR, VpFr1-7, and isolated compounds was assessed by determining their antioxidant, antimicrobial, and cytotoxic activities. VpFr4 (IC50 = 205.48 ± 3.37 μg.mL-1) had the highest antioxidant activity, whereas VpFr6 (IC50 = 842.79 ± 10.23 μg.mL-1) had the lowest. The resin was only active against Staphylococcus aureus (MIC 62.5 μg.mL-1) and Salmonella choleraesius (MIC and MFC 500 μg.mL-1), but fractions were enriched with antibacterial compounds. V. pyrantha resin and fractions showed great cytotoxic activity against HCT116 (IC50 = 20.08 μg.mL-1), HepG2 (IC50 = 20.50 μg.mL-1), and B16-F10 (12.17 μg.mL-1) cell lines. Multivariate statistical analysis was used as a powerful tool to pinpoint possible metabolites responsible for the observed activities.
Collapse
Affiliation(s)
- Luiz A F Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Iago B F Dos Santos
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Lourdes C de Souza-Neta
- Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil
| | | | | | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio G Ferreira
- Laboratório de Ressonância Magnética Nuclear, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Floricéa M Araújo
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química Aplicada (PGQA), Universidade do Estado da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil.
| |
Collapse
|
15
|
Oliveira LPS, Lima LR, Silva LB, Cruz JN, Ramos RS, Lima LS, Cardoso FMN, Silva AV, Rodrigues DP, Rodrigues GS, Proietti-Junior AA, dos Santos GB, Campos JM, Santos CBR. Hierarchical Virtual Screening of Potential New Antibiotics from Polyoxygenated Dibenzofurans against Staphylococcus aureus Strains. Pharmaceuticals (Basel) 2023; 16:1430. [PMID: 37895901 PMCID: PMC10610096 DOI: 10.3390/ph16101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a microorganism with high morbidity and mortality due to antibiotic-resistant strains, making the search for new therapeutic options urgent. In this context, computational drug design can facilitate the drug discovery process, optimizing time and resources. In this work, computational methods involving ligand- and structure-based virtual screening were employed to identify potential antibacterial agents against the S. aureus MRSA and VRSA strains. To achieve this goal, tetrahydroxybenzofuran, a promising antibacterial agent according to in vitro tests described in the literature, was adopted as the pivotal molecule and derivative molecules were considered to generate a pharmacophore model, which was used to perform virtual screening on the Pharmit platform. Through this result, twenty-four molecules were selected from the MolPort® database. Using the Tanimoto Index on the BindingDB web server, it was possible to select eighteen molecules with greater structural similarity in relation to commercial antibiotics (methicillin and oxacillin). Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the eighteen most similar molecules, showed that only three exhibited desired properties (LB255, LB320 and LB415). In the molecular docking study, the promising molecules LB255, LB320 and LB415 showed significant values in both molecular targets. LB320 presented better binding affinity to MRSA (-8.18 kcal/mol) and VRSA (-8.01 kcal/mol) targets. Through PASS web server, the three molecules, specially LB320, showed potential for antibacterial activity. Synthetic accessibility (SA) analysis performed on AMBIT and SwissADME web servers showed that LB255 and LB415 can be considered difficult to synthesize and LB320 is considered easy. In conclusion, the results suggest that these ligands, particularly LB320, may bind strongly to the studied targets and may have appropriate ADME/Tox properties in experimental studies.
Collapse
Affiliation(s)
- Lana P. S. Oliveira
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Lúcio R. Lima
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal Univesity of Pará, Belém 66075-110, Brazil
| | - Luciane B. Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal Univesity of Pará, Belém 66075-110, Brazil
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Ryan S. Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Luciana S. Lima
- Special Laboratory of Applied Microbiology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil;
| | - Francy M. N. Cardoso
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Special Laboratory of Applied Microbiology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil;
| | - Aderaldo V. Silva
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Dália P. Rodrigues
- Laboratory of Bacterial Enteric Pathogens, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21045-900, Brazil;
| | - Gabriela S. Rodrigues
- Graduate Program in Health Sciences, Institute of Collective Health, Federal University of Western Pará, Santarém 68270-000, Brazil; (G.S.R.); (G.B.d.S.)
| | - Aldo A. Proietti-Junior
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Special Laboratory of Applied Microbiology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil;
| | - Gabriela B. dos Santos
- Graduate Program in Health Sciences, Institute of Collective Health, Federal University of Western Pará, Santarém 68270-000, Brazil; (G.S.R.); (G.B.d.S.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs. GRANADA, University of Granada, 18071 Granada, Spain;
| | - Cleydson B. R. Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, Brazil
| |
Collapse
|
16
|
Cascaes MM, Marques da Silva SH, de Oliveira MS, Cruz JN, de Moraes ÂAB, do Nascimento LD, Ferreira OO, Guilhon GMSP, Andrade EHDA. Exploring the chemical composition, in vitro and in silico study of the anticandidal properties of annonaceae species essential oils from the Amazon. PLoS One 2023; 18:e0289991. [PMID: 37616214 PMCID: PMC10449155 DOI: 10.1371/journal.pone.0289991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Chemical composition of the essential oils (EOs) from the leaves of five Annonaceae species found in the amazon region was analyzed by Gas chromatography coupled to mass spectrometry. The antifungal activity of theses EOs was tested against Candida albicans, Candida auris, Candida famata, Candida krusei and Candida tropicalis. In addition, an in silico study of the molecular interactions was performed using molecular modeling approaches. Spathulenol (29.88%), α-pinene (15.73%), germacra-4(15),5,10(14)-trien-1-α-ol (6.65%), and caryophylene oxide (6.28%) where the major constitents from the EO of Anaxagorea dolichocarpa. The EO of Duguetia echinophora was characterized by β-phellanderene (24.55%), cryptone (12.43%), spathulenol (12.30%), and sabinene (7.54%). The major compounds of the EO of Guatteria scandens where β-pinene (46.71%), α-pinene (9.14%), bicyclogermacrene (9.33%), and E-caryophyllene (8.98%). The EO of Xylopia frutescens was characterized by α-pinene (40.12%) and β-pinene (36.46%). Spathulenol (13.8%), allo-aromadendrene epoxide (8.99%), thujopsan-2-α-ol (7.74%), and muurola-4,10(14)-dien-1-β-ol (7.14%) were the main chemical constituents reported in Xylopia emarginata EO. All EOs were active against the strains tested and the lowest inhibitory concentrations were observed for the EOs of D. echinophora, X. emarginata, and X. frutescens against C. famata the Minimum Inhibitory Concentration values of 0.07, 0.019 and 0.62 μL.mL-1, respectively. The fungicidal action was based on results of minimum fungicidal concentration and showed that the EOs showed fungicide activity against C. tropicalis (2.5 μL.mL-1), C. krusei (2.5 μL.mL-1) and C. auris (5 μL.mL-1), respectively. The computer simulation results indicated that the major compounds of the EOs can interact with molecular targets of Candida spp.
Collapse
Affiliation(s)
- Márcia Moraes Cascaes
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, PA, Brazil
| | - Silvia Helena Marques da Silva
- Seção de Bacteriologia e Micologia LabMicol—SABMI Laboratório de Micologia, Instituto Evandro Chagas—IEC/SVS/MS, Ananindeua, Brazil
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, Brazil
- Programa de Pós-Graduação em Ciências Biológicas—Botânica Tropical, Universidade Federal Rural da Amazônia and Museu Paraense Emílio Goeldi, Belém, PA, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil
| | - Ângelo Antônio Barbosa de Moraes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | | | - Eloisa Helena de Aguiar Andrade
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório Adolpho Ducke, Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, Brazil
| |
Collapse
|
17
|
Cruz JN, Oliveira MSD, Cascaes M, Mali SN, Tambe S, Santos CBRD, Zoghbi MDGB, Andrade EHDA. Variation in the Chemical Composition of Endemic Specimens of Hedychium coronarium J. Koenig from the Amazon and In Silico Investigation of the ADME/Tox Properties of the Major Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2626. [PMID: 37514241 PMCID: PMC10384162 DOI: 10.3390/plants12142626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
Four species of the genus Hedychium can be found in Brazil. Hedychium coronarium is a species endemic to India and Brazil. In this paper, we collected six specimens of H. coronarium for evaluation of their volatile chemical profiles. For this, the essential oils of these specimens were extracted using hydrodistillation from plant samples collected in the state of Pará, Brazil, belonging to the Amazon region in the north of the country. Substance compounds were identified with GC/MS. The most abundant constituent identified in the rhizome and root oils was 1,8-cineole (rhizome: 35.0-66.1%; root: 19.6-20.8%). Leaf blade oil was rich in β-pinene (31.6%) and (E)-caryophyllene (31.6%). The results from this paper allow for greater knowledge about the volatile chemical profile of H. coronarium specimens, in addition to disseminating knowledge about the volatile compounds present in plant species in the Amazon region.
Collapse
Affiliation(s)
- Jorddy Neves Cruz
- Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Belém 66075-110, Pará, Brazil
| | | | - Marcia Cascaes
- Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Belém 66075-110, Pará, Brazil
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Main Campus at Mumbai, Deemed University, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
| | - Srushti Tambe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Main Campus at Mumbai, Deemed University, Nathalal Parekh Marg, Mumbai 400019, Maharashtra, India
| | - Cleydson Breno Rodrigues Dos Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Amapá, Brazil
| | | | - Eloisa Helena de Aguiar Andrade
- Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Belém 66075-110, Pará, Brazil
- Faculty of Chemistry, Federal University of Pará, Rua Augusto Corrêa, Belém 66075-750, Pará, Brazil
| |
Collapse
|
18
|
Firdoos S, Dai R, Tahir RA, Khan ZY, Li H, Zhang J, Ni J, Quan Z, Qing H. In silico identification of novel stilbenes analogs for potential multi-targeted drugs against Alzheimer's disease. J Mol Model 2023; 29:209. [PMID: 37314512 DOI: 10.1007/s00894-023-05609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
CONTEXT Alzheimer's disease (AD) is a chronic progressive neurodegenerative syndrome, which adversely disturbs cognitive abilities as well as intellectual processes and frequently occurs in the elderly. Inhibition of cholinesterase is a valuable approach to upsurge acetylcholine concentrations in the brain and persuades the development of multi-targeted ligands against cholinesterases. METHODS The current study aims to determine the binding potential accompanied by antioxidant and anti-inflammatory activities of stilbenes-designed analogs against both cholinesterases (Acetylcholinesterase and butyrylcholinesterase) and neurotrophin targets for effective AD therapeutics. Docking results have shown that the WS6 compound exhibited the least binding energy - 10.1 kcal/mol with Acetylcholinesterase and - 7.8 kcal/mol with butyrylcholinesterase. The WS6 also showed a better binding potential with neurotrophin targets that are Brain-derived Neurotrophic Factor, Neurotrophin 4, Nerve Growth Factor, and Neurotrophin 3. The tested compounds particularly WS6 revealed significant antioxidant and anti-inflammatory activities through the comparative docking analysis with Fluorouracil and Melatonin as control drugs of antioxidants while Celecoxib and Anakinra as anti-inflammatory. The bioinformatics approaches including molecular docking calculations followed by the pharmacokinetics analysis and molecular dynamic simulations were accomplished to explore the capabilities of designed stilbenes as effective and potential leads. Root mean square deviation, root mean square fluctuations, and MM-GBSA calculations were performed through molecular dynamic simulations to extract the structural and residual variations and binding free energies through the 50-ns time scale.
Collapse
Affiliation(s)
- Sundas Firdoos
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China.
| | - Rana Adnan Tahir
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Muzaffarabad, Pakistan
| | - Zahid Younas Khan
- Department of Computer Science and IT, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
19
|
Carmo Bastos ML, Silva-Silva JV, Neves Cruz J, Palheta da Silva AR, Bentaberry-Rosa AA, da Costa Ramos G, de Sousa Siqueira JE, Coelho-Ferreira MR, Percário S, Santana Barbosa Marinho P, Marinho AMDR, de Oliveira Bahia M, Dolabela MF. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16050765. [PMID: 37242548 DOI: 10.3390/ph16050765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer is among the major causes of death from neoplasia leading causes of death worldwide, with high incidence rates and problems related to its treatment. Here, we outline how Geissospermum sericeum exerts antitumor activity on the ACP02 cell line (human gastric adenocarcinoma) and the mechanism of cell death. The ethanol extract and fractions, neutral fraction and alkaloid fraction, were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid (geissoschizoline N4-methylchlorine) identified by NMR. The cytotoxicity activity of the samples (ethanol extract, neutral fraction, alkaloid fraction, and geissoschizoline N4-methylchlorine) in HepG2 and VERO cells was determined by MTT. The ACP02 cell line was used to assess the anticancer potential. Cell death was quantified with the fluorescent dyes Hoechst 33342, propidium iodide, and fluorescein diacetate. The geissoschizoline N4-methylchlorine was evaluated in silico against caspase 3 and 8. In the antitumor evaluation, there was observed a more significant inhibitory effect of the alkaloid fraction (IC50 18.29 µg/mL) and the geissoschizoline N4-methylchlorine (IC50 12.06 µg/mL). However, geissoschizoline N4-methylchlorine showed lower cytotoxicity in the VERO (CC50 476.0 µg/mL) and HepG2 (CC50 503.5 µg/mL) cell lines, with high selectivity against ACP02 cells (SI 39.47 and 41.75, respectively). The alkaloid fraction showed more significant apoptosis and necrosis in 24 h and 48 h, with increased necrosis in higher concentrations and increased exposure time. For the alkaloid, apoptosis and necrosis were concentration- and time-dependent, with a lower necrosis rate. Molecular modeling studies demonstrated that geissoschizoline N4-methylchlorine could occupy the active site of caspases 3 and 8 energetically favorably. The results showed that fractionation contributed to the activity with pronounced selectivity for ACP02 cells, and geissoschizoline N4-methylchlor is a promising candidate for caspase inhibitors of apoptosis in gastric cancer. Thus, this study provides a scientific basis for the biological functions of Geissospermum sericeum, as well as demonstrates the potential of the geissoschizoline N4-methylchlorine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Mirian Letícia Carmo Bastos
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Victor Silva-Silva
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Jorddy Neves Cruz
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | - Gisele da Costa Ramos
- Post-Graduate Program in Chemistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Márlia Regina Coelho-Ferreira
- Emílio Goeldi Paraense Museum, Coordination of Botany, Ministry of Science, Technology, Innovation and Communications, Belém 66077-830, PA, Brazil
| | - Sandro Percário
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | - Marcelo de Oliveira Bahia
- Laboratory of Human Cytogenetic, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Maria Fâni Dolabela
- Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
20
|
Bastos RS, de Lima LR, Neto MFA, Yousaf N, Cruz JN, Campos JM, Kimani NM, Ramos RS, Santos CBR. Design and Identification of Inhibitors for the Spike-ACE2 Target of SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24108814. [PMID: 37240165 DOI: 10.3390/ijms24108814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 05/28/2023] Open
Abstract
When an epidemic started in the Chinese city of Wuhan in December 2019, coronavirus was identified as the cause. Infection by the virus occurs through the interaction of viral S protein with the hosts' angiotensin-converting enzyme 2. By leveraging resources such as the DrugBank database and bioinformatics techniques, ligands with potential activity against the SARS-CoV-2 spike protein were designed and identified in this investigation. The FTMap server and the Molegro software were used to determine the active site of the Spike-ACE2 protein's crystal structure. Virtual screening was performed using a pharmacophore model obtained from antiparasitic drugs, obtaining 2000 molecules from molport®. The ADME/Tox profiles were used to identify the most promising compounds with desirable drug characteristics. The binding affinity investigation was then conducted with selected candidates. A molecular docking study showed five structures with better binding affinity than hydroxychloroquine. Ligand_003 showed a binding affinity of -8.645 kcal·mol-1, which was considered an optimal value for the study. The values presented by ligand_033, ligand_013, ligand_044, and ligand_080 meet the profile of novel drugs. To choose compounds with favorable potential for synthesis, synthetic accessibility studies and similarity analyses were carried out. Molecular dynamics and theoretical IC50 values (ranging from 0.459 to 2.371 µM) demonstrate that these candidates are promising for further tests. Chemical descriptors showed that the candidates had strong molecule stability. Theoretical analyses here show that these molecules have potential as SARS-CoV-2 antivirals and therefore warrant further investigation.
Collapse
Affiliation(s)
- Ruan S Bastos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belem 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Lúcio R de Lima
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belem 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Moysés F A Neto
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Jorddy N Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Joaquín M Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu 6-60100, Kenya
| | - Ryan S Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Cleydson B R Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belem 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| |
Collapse
|
21
|
Wanjari PJ, Rath A, Sathe RY, Bharatam PV. Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach. J Mol Model 2023; 29:156. [PMID: 37097473 DOI: 10.1007/s00894-023-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Biguanide derivatives exhibit a wide variety of therapeutic applications, including anti-cancer effects. Metformin is an effective anti-cancer agent against breast cancer, lung cancer, and prostate cancer. In the crystal structure (PDB ID: 5G5J), it was found that metformin is found in the active site of CYP3A4, and the associated anti-cancer effect was explored. Taking clues from this work, pharmacoinformatics research has been carried out on a series of known and virtual biguanide, guanylthiourea (GTU), and nitreone derivatives. This exercise led to the identification of more than 100 species that exhibit greater binding affinity toward CYP3A4 in comparison to that of metformin. Selected six molecules were subjected to molecular dynamics simulations, and the results are presented in this work.
Collapse
Affiliation(s)
- Pravin J Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Asutosh Rath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Rohit Y Sathe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
22
|
Shahane K, Kshirsagar M, Tambe S, Jain D, Rout S, Ferreira MKM, Mali S, Amin P, Srivastav PP, Cruz J, Lima RR. An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L. Pharmaceuticals (Basel) 2023; 16:ph16040611. [PMID: 37111369 PMCID: PMC10142266 DOI: 10.3390/ph16040611] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Calendula officinalis Linn. (CO) is a popular medicinal plant from the plant kingdom's Asteraceae family that has been used for millennia. This plant contains flavonoids, triterpenoids, glycosides, saponins, carotenoids, volatile oil, amino acids, steroids, sterols, and quinines. These chemical constituents confer multifaceted biological effects such as anti-inflammatory, anti-cancer, antihelminthic, antidiabetes, wound healing, hepatoprotective, and antioxidant activities. Additionally, it is employed in cases of certain burns and gastrointestinal, gynecological, ocular, and skin conditions. In this review, we have discussed recent research from the last five years on the therapeutic applications of CO and emphasized its myriad capabilities as a traditional medicine. We have also elucidated CO's molecular mechanisms and recent clinical studies. Overall, this review intends to summarize, fill in the gaps in the existing research, and provide a wealth of possibilities for researchers working to validate traditional claims and advance the safe and effective use of CO in treating various ailments.
Collapse
Affiliation(s)
- Kiran Shahane
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Madhuri Kshirsagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Srushti Tambe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Divya Jain
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Suraj Mali
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra 835215, India
| | - Purnima Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Jorddy Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
23
|
Issahaku AR, Mncube SM, Agoni C, Kwofie SK, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Mukelabai N, Soremekun O, Soliman MES. Multi-dimensional structural footprint identification for the design of potential scaffolds targeting METTL3 in cancer treatment from natural compounds. J Mol Model 2023; 29:122. [PMID: 36995499 DOI: 10.1007/s00894-023-05516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
CONTEXT [Formula: see text]-adenosine-methyltransferase (METTL3) is the catalytic domain of the 'writer' proteins which is involved in the post modifications of [Formula: see text]-methyladinosine ([Formula: see text]). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved. METHODS In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs. RESULTS Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.
Collapse
|
24
|
Mohany M, Al-zharani M, Nasr FA, El-Wetidy MS, Farag M, Abdel-Mageed WM, El-Gamal A, Al-Rejaie SS, Noman OM, Qurtam AA, Rudayni HA, Aleissa MS. Persicaline, an alkaloid from Salvadora persica, inhibits proliferation and induces apoptosis and cell-cycle arrest in MCF-7 cells. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Abstract
Cancer is the second largest cause of mortality worldwide. Many natural bioactive chemicals generated from plants have favorable impacts on health, including cancer chemoprevention, compared to their manufactured counterparts. Persicaline, a novel sulfur-containing imidazoline alkaloid derived from Salvadora persica, has been shown to display promising antioxidant activity. In this study, the antiproliferative activity of persicaline was tested against different cancer cells using (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The cell death mode and cell-cycle arrest were examined using flow cytometry analysis. In addition, the proapoptotic and molecular mechanism effects of persicaline against mammary MCF-7 cell line were explored. Furthermore, the impact of persicaline on apoptotic genes markers, generation of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored. It was found that persicaline inhibits cell proliferation in a dose-dependent manner. Persicaline-treated MCF-7 cells also showed initiation of apoptotic events and G1 cell-cycle arrest. In addition, persicaline treatment led to an increase in ROS generation, Bax and caspase upregulation while the Bcl-2 was downregulated. Hence, for the first time, this study showed that persicaline causes G1 phase arrest and apoptosis induction in MCF-7 cells. Increased proapoptotic genes and ROS levels were required for the antiproliferative and apoptotic effects of persicaline.
Collapse
Affiliation(s)
- Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , P.O. Box 55760 , Riyadh – 1145 , Saudi Arabia
| | - Mohammed Al-zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| | - Mohammad S. El-Wetidy
- College of Medicine, Research Center, King Saud University , P.O. Box 2925 , Riyadh 11451 , Saudi Arabia
| | - Mohamed Farag
- Department of Pharmacognosy, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| | - Ali El-Gamal
- Department of Pharmacognosy, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , P.O. Box 55760 , Riyadh – 1145 , Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
| | - Ashraf Ahmed Qurtam
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| | - Hassan A. Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| | - Mohammed S. Aleissa
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
| |
Collapse
|
25
|
Luo L, Tan H, Liao Y. In silico analysis of marine natural product for protein arginine methyltransferase 5(PRMT5) inhibitors based on pharmacophore and molecular docking. J Biomol Struct Dyn 2023; 41:13180-13197. [PMID: 36856049 DOI: 10.1080/07391102.2023.2184172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/15/2023] [Indexed: 03/02/2023]
Abstract
Over the past few decades, various inhibitors of PRMT5 have been developed because of its involvement in a variety of tumor development processes. As of now, no drugs targeting PRMT5 have been approved, and multiple drugs entering clinical trials have proven to have side effects. In this study, PRMT5 was used to perform virtual screening of 52119 marine natural compounds by combining various methods. We constructed 20 pharmacophore models based on multiple ligands. The best pharmacophore model AARR_2 was selected by analyzing the statistical parameters of the pharmacophore model and the binding characteristics of the ligand active site, and then 3552 compounds were screened out. Compared with the positive compound, 46 compounds were selected based on the molecular docking fraction and docking mode analysis. Then, 3D-QSAR was used to analyze the relationship between structure and activity of the compounds. Then, in addition to marine compounds 36404, 36405 and 14436, we selected compound 46 (the positive control compound) and used the CLC-Pred online Web server to predict their cytotoxicity to human cell lines, making cell experiments possible. Finally, we conducted the prediction of ADMET in order to better promote clinical trials. After comprehensive judgment, we screened out the marine natural compounds 36404 and 36405 as candidates for PRMT5 substrate competitive inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China
| | - Huiting Tan
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yinglin Liao
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
26
|
Anthocyanin extract from black rice attenuates chronic inflammation in DSS-induced colitis mouse model by modulating the gut microbiota. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Abstract
There is substantial evidence for the probiotic activity of anthocyanins, but the relationship between anthocyanins involved in the regulation of microbiota and intestinal inflammation has not been fully elucidated. The aim of this study was to investigate the regulatory effects of black rice anthocyanin extract (BRAE) on intestinal microbiota imbalance in mice with dextran sulfate sodium (DSS)-induced chronic colitis. DSS was added into drinking water to induce a mouse model of chronic experimental colitis, and BRAE was given by gavage (200 mg/kg/day) for 4 weeks. Body weight, fecal viscosity, and hematochezia were monitored during administration. After mice were sacrificed, the serum concentrations of TNF-α and IL-6 were detected by enzyme-linked immunosorbent assay, and the composition of intestinal flora was analyzed by 16S rDNA sequencing. The results showed that BRAE significantly suppressed DSS-induced colonic inflammatory phenotypes and maintained colon length in mice. In addition, BRAE reduced intestinal permeability and improved intestinal barrier dysfunction in mice with colitis. Gut microbiota analysis showed that BRAE significantly improved the imbalance of intestinal microecological diversity caused by DSS, inhibited the increase in the relative abundance of inflammatory bacteria, and promoted the abundance of anti-inflammatory probiotics including Akkermansia spp.
Collapse
|
27
|
Design, synthesis and α-glucosidase inhibition study of novel pyridazin-based derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Bhattarai A, Priyadharshini A, Emerson IA. Investigating the binding affinity of andrographolide against human SARS-CoV-2 spike receptor-binding domain through docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:13438-13453. [PMID: 36764825 DOI: 10.1080/07391102.2023.2174596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023]
Abstract
SARS-CoV-2 is a positive-sense single-stranded RNA virus that causes a deadly coronavirus disease (COVID-19) in humans. The infection of SARS-CoV-2 in humans involves a viral surface spike glycoprotein containing the receptor-binding domain (RBD). The interactions of SARS-CoV-2 with the host angiotensin-converting enzyme 2 (ACE2) receptor are mediated by RBD. It binds to the host ACE2 and influences viral replication and disease pathogenesis. Therefore, targeting the RBD to prevent SARS-CoV-2 infections is of utmost importance. In this study, we used docking and molecular dynamics simulations to understand the binding effect of andrographolide on the SARS-CoV-2 spike protein. During docking, a strong binding affinity was observed between the ligand and the target receptor protein. MD results demonstrated higher conformational fluctuations in the ligand-free protein compared to the bound form. Several residues in the active sites make conformational rearrangements for the S protein to interact with the ligand. While RBD experiences conformational transition to gain more stability upon binding with the ligand. This binding is strengthened via several non-covalent interactions that make the complex structure more stable with higher binding affinity. Overall findings of the study may shed some valuable insights concerning the development of potential therapeutics in the strategies for COVID-19 prevention.
Collapse
Affiliation(s)
- Anil Bhattarai
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, VIT, Vellore, Tamil Nadu, India
| | - Annadurai Priyadharshini
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, VIT, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
29
|
Galantamine Based Novel Acetylcholinesterase Enzyme Inhibitors: A Molecular Modeling Design Approach. Molecules 2023; 28:molecules28031035. [PMID: 36770702 PMCID: PMC9919016 DOI: 10.3390/molecules28031035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Acetylcholinesterase (AChE) enzymes play an essential role in the development of Alzheimer's disease (AD). Its excessive activity causes several neuronal problems, particularly psychopathies and neuronal cell death. A bioactive pose on the hAChE B site of the human acetylcholinesterase (hAChE) enzyme employed in this investigation, which was obtained from the Protein Data Bank (PDB ID 4EY6), allowed for the prediction of the binding affinity and free binding energy between the protein and the ligand. Virtual screening was performed to obtain structures similar to Galantamine (GNT) with potential hAChE activity. The top 200 hit compounds were prioritized through the use of filters in ZincPharmer, with special features related to the pharmacophore. Critical analyses were carried out, such as hierarchical clustering analysis (HCA), ADME/Tox predictions, molecular docking, molecular simulation studies, synthetic accessibility (SA), lipophilicity, water solubility, and hot spots to confirm the stable binding of the two promising molecules (ZINC16951574-LMQC2, and ZINC08342556-LMQC5). The metabolism prediction, with metabolites M3-2, which is formed by Glutathionation reaction (Phase II), M1-2, and M2-2 formed from the reaction of S-oxidation and Aliphatic hydroxylation (Phase I), were both reactive but with no side effects. Theoretical synthetic routes and prediction of synthetic accessibility for the most promising compounds are also proposed. In conclusion, this study shows that in silico modeling can be used to create new drug candidate inhibitors for hAChE. The compounds ZINC16951574-LMQC2, and ZINC08342556-LMQC5 are particularly promising for oral administration because they have a favorable drug-likeness profile, excellent lipid solubility, high bioavailability, and adequate pharmacokinetics.
Collapse
|
30
|
Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:ph16010095. [PMID: 36678592 PMCID: PMC9864454 DOI: 10.3390/ph16010095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The enhancement of cholinergic functions via acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition is considered a valuable therapeutic strategy for the treatment of Alzheimer's disease. This study aimed to evaluate the in vitro effect of ZINC390718, previously filtered using computational approaches, on both cholinesterases and to characterize, using a molecular dynamics (MD) simulation, the possible binding mode of this compound inside the cholinesterase enzymes. The in vitro cytotoxicity effect was also investigated using a primary astrocyte-enriched glial cell culture. ZINC390718 presented in vitro dual inhibitory activity against AChE at a high micromolar range (IC50 = 543.8 µM) and against BuChE (IC50 = 241.1 µM) in a concentration-dependent manner, with greater activity against BuChE. The MD simulation revealed that ZINC390718 performed important hydrophobic and H-bond interactions with the catalytic residue sites on both targets. The residues that promoted the hydrophobic interactions and H-bonding in the AChE target were Leu67, Trp86, Phe123, Tyr124, Ser293, Phe295, and Tyr341, and on the BuChE target, they were Asp70, Tyr332, Tyr128, Ile442, Trp82, and Glu197. The cytotoxic effect of Z390718, evaluated via cell viability, showed that the molecule has low in vitro toxicity. The in vitro and in silico results indicate that ZINC390718 can be used as chemotype for the optimization and identification of new dual cholinesterase inhibitors.
Collapse
|
31
|
Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine. SEPARATIONS 2022. [DOI: 10.3390/separations10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
P. nigrum L. extracts and the piperine alkaloid have important antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, in this study, we evaluated the antimicrobial activity and cytotoxicity of P. nigrum L. extracts and piperine, a compound isolated from the extracts of P. nigrum L. Extracts obtained via maceration, soxhlet, and purification steps, in addition to isolated piperine, were used in this study. Spectroscopic methods, such as nuclear magnetic resonance, scanning electron microscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry, were used to characterize piperine. In the microbiological analyses, the extract obtained via maceration-derived sample showed high efficiency in inhibiting Salmonella spp. (MIC < 100 μg/mL). The extract obtained via a soxhlet-derived sample showed promising inhibitory activity against almost all microorganisms, with negligible inhibition of Pseudomonas aeruginosa. Favorable inhibition coefficients were also observed against Staphylococcus aureus and Salmonella spp. (MIC < 100 μg/mL) for the extract obtained via purification of the steps-derived sample. Piperine showed an excellent inhibition coefficient against most microorganisms, with inactivity only observed against P. aeruginosa. Cytotoxicity evaluation assays in cancer cell lines revealed that piperine exhibited inhibitory potential on all tested tumor cell lines, causing a decrease in cell viability and achieving an IC50 of less than 30 μg/mL. The analyzed extracts from P. nigrum L. seeds showed cytotoxic activity against tumor and non-tumor cell lines.
Collapse
|
32
|
S. Setlur A, Karunakaran C, Pandey S, Sarkar M, Niranjan V. Molecular interaction studies of thymol via molecular dynamic simulations and free energy calculations using multi-target approach against Aedes aegypti proteome to decipher its role as mosquito repellent. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2159054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anagha S. Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| | | | - Shruti Pandey
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana, India
| | - Manas Sarkar
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Karnataka, India
| |
Collapse
|
33
|
Shelke DE, Thorat BR, Mali SN, Dhabarde SS. Synthesis, In Silico and In Vitro Antimycobacterial Studies on Substituted Benzofuran Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
da Costa LS, de Moraes ÂAB, Cruz JN, Mali SN, Almeida LQ, do Nascimento LD, Ferreira OO, Varela ELP, Percário S, de Oliveira MS, Andrade EHDA. First Report on the Chemical Composition, Antioxidant Capacity, and Preliminary Toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) Essential Oil, and In Silico Study. Antioxidants (Basel) 2022; 11:antiox11122410. [PMID: 36552618 PMCID: PMC9774510 DOI: 10.3390/antiox11122410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Croton campinarensis Secco, A. Rosário & PE Berry is an aromatic species recently discovered in the Amazon region. This study first reports the chemical profile, antioxidant capacity, and preliminary toxicity to A. salina Leach of the essential oil (EO) of this species. The phytochemical profile of the essential oil was analyzed by gas chromatography (GC/MS) and (GC-FID). The antioxidant capacity of the EO was measured by its inhibition of ABTS•+ and DPPH• radicals. Molecular modeling was used to evaluate the mode of interaction of the major compounds with acetylcholinesterase (AChE). The results indicate that the EO yield was 0.24%, and germacrene D (26.95%), bicyclogermacrene (17.08%), (E)-caryophyllene (17.06%), and δ-elemene (7.59%) were the major compounds of the EO sample. The EO showed a TEAC of 0.55 ± 0.04 mM·L-1 for the reduction of the ABTS•+ radical and 1.88 ± 0.08 mM·L-1 for the reduction of the DPPH• radical. Regarding preliminary toxicity, the EO was classified as toxic in the bioassay with A. salina (LC50 = 20.84 ± 4.84 µg·mL-1). Through molecular docking, it was found that the majority of the EO components were able to interact with the binding pocket of AChE, a molecular target related to toxicity evaluated in A. salina models; the main interactions were van der Waals and π-alkyl interactions.
Collapse
Affiliation(s)
- Leonardo Souza da Costa
- School of Chemical Engineering, Institute of Technology, Universidade Federal do Pará, Belem 66075-110, Brazil
| | - Ângelo Antônio Barbosa de Moraes
- School of Chemical Engineering, Institute of Technology, Universidade Federal do Pará, Belem 66075-110, Brazil
- Adolpho Ducke Laboratory, Coordination of Botany, Emílio Goeldi Museum of Pará, Belem 66077-830, Brazil
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Belem 66075-110, Brazil
| | - Suraj N. Mali
- Department of Pharmacy, Government College of Pharmacy, Affiliated to Shivaji University, Kolhapur, Karad 415124, Maharashtra, India
| | - Lorena Queiroz Almeida
- School of Chemical Engineering, Institute of Technology, Universidade Federal do Pará, Belem 66075-110, Brazil
| | | | - Oberdan Oliveira Ferreira
- Adolpho Ducke Laboratory, Coordination of Botany, Emílio Goeldi Museum of Pará, Belem 66077-830, Brazil
| | - Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Biological Sciences Institute, Universidade Federal do Pará, Belem 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Biological Sciences Institute, Universidade Federal do Pará, Belem 66075-110, Brazil
| | - Mozaniel Santana de Oliveira
- Adolpho Ducke Laboratory, Coordination of Botany, Emílio Goeldi Museum of Pará, Belem 66077-830, Brazil
- Correspondence:
| | | |
Collapse
|
35
|
Chen T, Shi Y, Shi W. Huangqi Guizhi Wuwu decoction in peripheral neurotoxicity treatment using network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31281. [PMID: 36281162 PMCID: PMC9592446 DOI: 10.1097/md.0000000000031281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we predicted the core active compounds of Huangqi Guizhi Wuwu decoction in treatment of oxaliplatin-induced peripheral neuropathy and the related potential mechanism. Corresponding database was used to complete the interaction (PPI) network of key targets and the enrichment analysis of corresponding genmes. Molecular docking of key targets and key compounds was carried out using relevant software. The 60 chemical components corresponding to the oral absorption of Huangqi Guizhi Wuwu decoction correspond to 157 unique targets, and the 233 chemical components corresponding to percutaneous absorption in vitro correspond to 155 unique targets. There were 1074 unique targets for chemotherapy-induced peripheral neuropathy. Finally, three common key targets (SLC6A2, SLC6A3, and SLC6A4) and two key compounds (6-Gingerol and nuciferin) were screened according to the above three target datasets. The results showed that The PPI network of common key targets involved 23 associated proteins. In the related GO enrichment results, there were 33 items related to biological processes, 13 items related to cell composition, 21 items related to molecular function, and four KEGG pathway enrichments. L1000 kinase and GPCR perturbation analysis showed that the associated protein had an effect on the expression of multiple groups of kinase genes. HPA revealed that the enrichment of three common key targets was tissue-specific. The docking results showed that the 6 groups were structurally stable. The oral and topical use of Huangqi Guizhi Wuwu decoction can prevent and control peripheral neurotoxicity. The prevention and control effects may be related to its participation in the regulation of neurotransmitter transport, sympathetic activity, and transport. The histological parts of the mechanism are mainly distributed in the adrenal gland, placenta, brain, intestine, and lung, the blood is not specific. According to the prediction results of molecular docking, 6-Gingerol and nuciferin can closely bind to three common key targets.
Collapse
Affiliation(s)
- Tingting Chen
- School of the First Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yabo Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenchuan Shi
- Technology Transfer Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Botelho ADS, Ferreira OO, de Oliveira MS, Cruz JN, Chaves SHDR, do Prado AF, do Nascimento LD, da Silva GA, do Amarante CB, Andrade EHDA. Studies on the Phytochemical Profile of Ocimum basilicum var. minimum (L.) Alef. Essential Oil, Its Larvicidal Activity and In Silico Interaction with Acetylcholinesterase against Aedes aegypti (Diptera: Culicidae). Int J Mol Sci 2022; 23:ijms231911172. [PMID: 36232474 PMCID: PMC9569541 DOI: 10.3390/ijms231911172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aedes aegypti L. (Diptera: Culicidae) is an important transmitter of diseases in tropical countries and controlling the larvae of this mosquito helps to reduce cases of diseases such as dengue, zika and chikungunya. Thus, the present study aimed to evaluate the larvicidal potential of the essential oil (EO) of Ocimum basilicum var. minimum (L.) Alef. The EO was extracted by stem distillation and the chemical composition was characterized by gas chromatography coupled with mass spectrometry (GC/MS and GC-FID). The larvicidal activity of EO was evaluated against third instar Ae. aegypti following World Health Organization (WHO) standard protocol and the interaction of the major compounds with the acetylcholinesterase (AChE) was evaluated by molecular docking. The predominant class was oxygenated monoterpenes with a concentration of 81.69% and the major compounds were limonene (9.5%), 1,8-cineole (14.23%), linalool (24.51%) and methyl chavicol (37.41%). The O. basilicum var. minimum EO showed unprecedented activity against third instar Ae. aegypti larvae at a dose-dependent relationship with LC50 of 69.91 (µg/mL) and LC90 of 200.62 (µg/mL), and the major compounds were able to interact with AChE in the Molecular Docking assay, indicating an ecological alternative for mosquito larvae control.
Collapse
Affiliation(s)
- Anderson de Santana Botelho
- Faculty of Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa Street, S/N, Guamá, Belém 66075-900, Pará, Brazil
- Correspondence: (A.d.S.B.); (M.S.d.O.)
| | - Oberdan Oliveira Ferreira
- Adolpho Ducke Laboratory—Botany Coordination, Emílio Goeldi Museum of Pará, Perimetral Avenue, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Mozaniel Santana de Oliveira
- Adolpho Ducke Laboratory—Botany Coordination, Emílio Goeldi Museum of Pará, Perimetral Avenue, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
- Correspondence: (A.d.S.B.); (M.S.d.O.)
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil
| | - Sandro Henrique dos Reis Chaves
- Faculty of Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa Street, S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Alejandro Ferraz do Prado
- Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa Street, S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Lidiane Diniz do Nascimento
- Adolpho Ducke Laboratory—Botany Coordination, Emílio Goeldi Museum of Pará, Perimetral Avenue, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Geilson Alcantara da Silva
- Faculty of Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa Street, S/N, Guamá, Belém 66075-900, Pará, Brazil
| | - Cristine Bastos do Amarante
- Chemical Analysis Laboratory—Coordination of Earth Sciences and Ecology, Emílio Goeldi Museum of Pará, Perimetral Avenue, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Eloisa Helena de Aguiar Andrade
- Faculty of Chemistry, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa Street, S/N, Guamá, Belém 66075-900, Pará, Brazil
- Adolpho Ducke Laboratory—Botany Coordination, Emílio Goeldi Museum of Pará, Perimetral Avenue, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Pará, Brazil
| |
Collapse
|
37
|
Phytochemical Profile, Antioxidant Potential and Toxicity Evaluation of the Essential Oils from Duguetia and Xylopia Species (Annonaceae) from the Brazilian Amazon. Antioxidants (Basel) 2022; 11:antiox11091709. [PMID: 36139777 PMCID: PMC9495368 DOI: 10.3390/antiox11091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
The essential oils (EOs) of Duguetia echinophora, D. riparia, Xylopia emarginata and X. frutescens (Annonaceae) were obtained by hydrodistillation and the chemical composition was analyzed by GC-MS. An antioxidant assay using the ABTS and DPPH radicals scavenging method and cytotoxic assays against Artemia salina were also performed. We evaluated the interaction of the major compounds of the most toxic EO (X. emarginata) with the binding pocket of the enzyme Acetylcholinesterase, a molecular target related to toxicity in models of Artemia salina. The chemical composition of the EO of D. echinophora was characterized by β-phellandrene (39.12%), sabinene (17.08%) and terpinolene (11.17%). Spathulenol (22.22%), caryophyllene oxide (12.21%), humulene epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents of the EO from D. riparia. Spathulenol (5.65%) and caryophyllene oxide (5.63%) were the major compounds of the EO from X. emarginata. The EO of X. frutescens was characterized by α-pinene (20.84%) and byciclogermacrene (7.85%). The results of the radical scavenger DPPH assays ranged from 15.87 to 69.38% and the highest percentage of inhibition was observed for the EO of X. emarginata, while for ABTS radical scavenging, the antioxidant capacity of EOs varied from 14.61 to 63.67%, and the highest percentage of inhibition was observed for the EO of X. frutescens. The EOs obtained from D. echinophora, X. emarginata and X. frutescens showed high toxicity, while the EO of D. riparia was non-toxic. Because the EO of X. emarginata is the most toxic, we evaluated how its major constituents were able to interact with the Acetylcholinesterase enzyme. The docking results show that the compounds are able to bind to the binding pocket through non-covalent interactions with the residues of the binding pocket. The species X. emarginata and X. frutescens are the most promising sources of antioxidant compounds; in addition, the results obtained for preliminary cytotoxicity of the EOs of these species may also indicate a potential biological activity.
Collapse
|