1
|
Li J, Liu H, Jia Y, Tuniyazi X, Liao X, Zhao J, Du Y, Fang Z, Lü G. SW033291 promotes liver regeneration after acetaminophen-induced liver injury in mice. Biochem Biophys Res Commun 2025; 749:151365. [PMID: 39855045 DOI: 10.1016/j.bbrc.2025.151365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Acetaminophen (APAP) is a commonly utilized antipyretic and analgesic drug. Overdose of APAP is a primary contributor to drug-induced liver injury and acute liver failure (ALF). SW033291 has been shown to play a role in tissue regeneration in various diseases; however, its potential to facilitate liver regeneration following APAP-induced hepatic injury remains unexamined. Thus, this study focused on exploring the therapeutic impacts and mechanisms of SW033291 on liver damage by establishing models of APAP-induced acute liver injury in mice. The results showed that treatment with SW033291 reduces serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, decreases the area of hepatic necrosis, increases glutathione (GSH) levels, and decreases tissue malondialdehyde (MDA) content, as well as the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in mice with liver injury. It could also promote hepatocyte proliferation and inhibit apoptosis by increasing tissue prostaglandin E2 (PGE2) levels. In conclusion, SW033291 demonstrates the capacity to ameliorate APAP-induced hepatic injury in mice by fostering liver regeneration, attenuating oxidative stress, and modulating inflammatory responses, thereby presenting itself as a promising candidate for the development of therapeutic interventions targeting acute liver failure.
Collapse
Affiliation(s)
- Jing Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yutong Jia
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Xiayidanmu Tuniyazi
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Xia Liao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Jinlong Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Yun Du
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Ziyi Fang
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830054, Xinjiang, China
| | - Guodong Lü
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
2
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Kapur A, Sharma M, Sageena G. Therapeutic potential of N-acetyl cysteine during COVID-19 epoch. World J Virol 2022; 11:104-106. [PMID: 35433335 PMCID: PMC8966593 DOI: 10.5501/wjv.v11.i2.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/22/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
N-acetyl cysteine (NAC) is a promising drug for prophylaxis and treatment of coronavirus disease 2019 (COVID-19) based on antioxidant and anti-inflammatory mechanisms. Further studies with cautious approach are needed to establish the benefits and risks before considering NAC as an adjuvant treatment for COVID-19.
Collapse
Affiliation(s)
- Ajita Kapur
- Department of Pharmacology, V.P. Chest Institute, University of Delhi, Delhi 110007, India
| | - Munish Sharma
- Hindu Rao Hospital and NDMC Medical College, Delhi 110007, India
| | - Geetanjali Sageena
- Environmental Studies, Keshav Mahavidyalaya University of Delhi, New Delhi 110034, India
| |
Collapse
|
4
|
Ultrasonic assisted reverse micelle synthesis of a novel Zn-metal organic framework as an efficient candidate for antimicrobial activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Xiaoyue S, Yanbin L. Myasthenia gravis: The pharmacological basis of traditional Chinese medicine for its clinical application. Biofactors 2022; 48:228-238. [PMID: 34921710 DOI: 10.1002/biof.1812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 01/30/2023]
Abstract
We aimed to investigate the target and signal pathway of Smilacis Glabrae Rhixoma (SGR) in the treatment of myasthenia gravis (MG) based on network pharmacology, and to explore its potential molecular mechanism. The main active components of SGR were searched in the pharmacology database of traditional Chinese medicine systems, and analysis platform. The related targets of SGR were obtained by Genecards, connective tissue disease, therapeutic target database, Drugbank, and Online Mendelian Inheritance in Man database. Moreover, the target information was corrected through UniProtKB and also, this data integrated to draw the "Ingredients-targets" network of SGR. Protein interaction analysis was performed in data platform, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways as well as enrichment analysis on disease-drug target was carried out through metascape online platform. A total of 15 active components were collected from SGR, which correspond to 159 targets; There were 1758 MG-related targets; there are 81 targets related to both drug components and diseases, including 12 key targets. In GO bioaccumulation analysis, 1933 GO items were gathered, which were mainly related to the metabolism of active oxygen species and the active factors of postsynaptic neurotransmitter receptor. According to KEGG analysis, SGR may play a role in the treatment of MG through phosphatidylinositol-3-kinase-protein kinase B signaling pathway, T-cell receptor, cAMP, tumor necrosis factor (TNF), and interleukin-17 (IL-17) signaling pathway, Th17 cell differentiation, endocrine resistance, hepatitis, and some cancer pathways. This study shows that SGR mainly treat myasthenia gravis through the regulation of TNF, MAPK1, JUN, TP53 and other targets, T-cell receptor, TNF, and IL-17 signaling pathway, Th17 cell differentiation and other pathways, which reflects the characteristics of multicomponent, multitarget, and multichannel of traditional Chinese medicine, and providing a certain pharmacological basis for the follow-up study.
Collapse
Affiliation(s)
- Shen Xiaoyue
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Li Yanbin
- Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Pandolfi S, Chirumbolo S, Ricevuti G, Valdenassi L, Bjørklund G, Lysiuk R, Doşa MD, Lenchyk L, Fazio S. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality: Time for a suitable proposal. Basic Clin Pharmacol Toxicol 2021; 130:225-239. [PMID: 34811895 PMCID: PMC9011697 DOI: 10.1111/bcpt.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic is a highly dramatic concern for mankind. In Italy, the pandemic exerted its major impact throughout the period of February to June 2020. To date, the awkward amount of more than 134,000 deaths has been reported. Yet, post‐mortem autopsy was performed on a very modest number of patients who died from COVID‐19 infection, leading to a first confirmation of an immune‐thrombosis of the lungs as the major COVID‐19 pathogenesis, likewise for SARS. Since then (June–August 2020), no targeted early therapy considering this pathogenetic issue was approached. The patients treated with early anti‐inflammatory, anti‐platelet, anticoagulant and antibiotic therapy confirmed that COVID‐19 was an endothelial inflammation with immuno‐thrombosis. Patients not treated or scarcely treated with the most proper and appropriate therapy and in the earliest, increased the hospitalization rate in the intensive care units and also mortality, due to immune‐thrombosis from the pulmonary capillary district and alveoli. The disease causes widespread endothelial inflammation, which can induce damage to various organs and systems. Therapy must be targeted in this consideration, and in this review, we demonstrate how early anti‐inflammatory therapy may treat endothelia inflammation and immune‐thrombosis caused by COVID‐19, by using drugs we are going to recommend in this paper.
Collapse
Affiliation(s)
- Sergio Pandolfi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy.,Unit of Neurosurgery, Villa Mafalda Health Clinics, Rome, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Luigi Valdenassi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Geir Bjørklund
- Department of Direction Board, Council for Nutritional an Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|