1
|
Banjare L, Murmu A, Pandey NK, Matore BW, Banjare P, Bhattacharya A, Gayen S, Singh J, Roy PP. First report on exploration of structural features of natural compounds (NPACT database) for anti-breast cancer activity (MCF-7): QSAR-based virtual screening, molecular docking, ADMET, MD simulation, and DFT studies. In Silico Pharmacol 2024; 12:92. [PMID: 39435346 PMCID: PMC11490471 DOI: 10.1007/s40203-024-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Due to the high toxicity, poor efficacy and resistance associated with current anti-breast cancer drugs, there's growing interest in natural products (NPs) for their potential anti-cancer properties. Computational modelling of NPs to identify key structural features can aid in developing novel natural inhibitors. In this study, we developed statistically significant QSAR models based on NPs from the NPACT database, which have shown potential anticancer activity against the MCF-7 cancer cell lines. All the developed QSAR models were statistically robust, meeting both internal (R 2 = 0.666-0.669, R 2 adj = 0.657-0.660, Q 2 Loo = 0.636-0.638) and external (Q 2 F n = 0.686-0.714, CCC ext = 0.830-0.847) validation criteria. Consequently, they were utilized to virtually screen a series of NPs from the COCONUT database in the search for novel natural inhibitors. Molecular docking studies were conducted on the identified compounds against the human HER2 protein (PDB ID: 3PP0), which is a crucial target in breast cancer. Molecular docking analysis demonstrated that compounds 4608 and 2710 achieved the highest docking scores, with CDOCKER interaction energies of -72.67 kcal/mol and - 72.63 kcal/mol respectively. Compounds 4608 and 2710 were identified as the most promising candidates upon performing triplicate 100 ns MD simulation study using the CHARMM36 force field. DFT studies was performed to evaluate their stability and reactivity as potential drug molecules. This research contributes to the development of new natural inhibitors for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00266-5.
Collapse
Affiliation(s)
- Lomash Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Anjali Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Nilesh Kumar Pandey
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Purusottam Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Arijit Bhattacharya
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Jagadish Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Partha Pratim Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| |
Collapse
|
2
|
Aloui M, El fadili M, Mujwar S, Er-rahmani S, Abuelizz HA, Er-rajy M, Zarougui S, Elhallaoui M. Design of novel potent selective survivin inhibitors using 2D-QSAR modeling, molecular docking, molecular dynamics, and ADMET properties of new MX-106 hydroxyquinoline scaffold derivatives. Heliyon 2024; 10:e38383. [PMID: 39397921 PMCID: PMC11467593 DOI: 10.1016/j.heliyon.2024.e38383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Given the critical role of survivin (BIRC5) in tumor cell regulation, developing novel inhibitors represents a promising approach for cancer therapy. This study details the design of innovative survivin inhibitors based on the hydroxyquinoline scaffold of our previously reported lead compound, MX-106. Our study identified nine compounds whose inhibitory activity is expected to be superior to that of the most active molecule in the series. These compounds demonstrated potent suppression of MDA-MB-435 breast cancer cell proliferation in vitro and exhibited enhanced metabolic stability compared to the series' most active member. To evaluate these derivatives as potential survivin inhibitors, we employed a multi-faceted approach combining 2D-QSAR methods, molecular docking, molecular dynamics, and ADMET property assessment. Our molecular modeling studies led to the design of nine novel compounds (Pred1-Pred9) predicted to exhibit potent survivin inhibitory activity based on MLR models. To assess their suitability as drug candidates, we recommend a thorough evaluation of their ADMET properties. These compounds hold promise as innovative anticancer agents targeting survivin, similar to the established MX-106.
Collapse
Affiliation(s)
- Mourad Aloui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sara Er-rahmani
- Dipartimento di Chimica, Università di Torino, 10125, Torino, Italy
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed Er-rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Zhao X, Kong Y, Ji Y, Xin X, Chen L, Chen G, Yu C. Classification models for predicting the bioactivity of pan-TRK inhibitors and SAR analysis. Mol Divers 2024; 28:2077-2097. [PMID: 37910346 DOI: 10.1007/s11030-023-10735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
Tropomyosin receptor kinases (TRKs) are important broad-spectrum anticancer targets. The oncogenic rearrangement of the NTRK gene disrupts the extracellular structural domain and epitopes for therapeutic antibodies, making small-molecule inhibitors essential for treating NTRK fusion-driven tumors. In this work, several algorithms were used to construct descriptor-based and nondescriptor-based models, and the models were evaluated by outer 10-fold cross-validation. To find a model with good generalization ability, the dataset was partitioned by random and cluster-splitting methods to construct in- and cross-domain models, respectively. Among the 48 models built, the model with the combination of the deep neural network (DNN) algorithm and extended connectivity fingerprints 4 (ECFP4) descriptors achieved excellent performance in both dataset divisions. The results indicate that the DNN algorithm has a strong generalization prediction ability, and the richness of features plays a vital role in predicting unknown spatial molecules. Additionally, we combined the clustering results and decision tree models of fingerprint descriptors to perform structure-activity relationship analysis. It was found that nitrogen-containing aromatic heterocyclic and benzo heterocyclic structures play a crucial role in enhancing the activity of TRK inhibitors.
Collapse
Affiliation(s)
- Xiaoman Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
- College of Bio engineering, No. 9 Liangshuihe 1st Street, Beijing, 100176, People's Republic of China
| | - Yue Kong
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Yueshan Ji
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Xiulan Xin
- College of Bio engineering, No. 9 Liangshuihe 1st Street, Beijing, 100176, People's Republic of China
| | - Liang Chen
- College of Bio engineering, No. 9 Liangshuihe 1st Street, Beijing, 100176, People's Republic of China
| | - Guang Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
El Fadili M, Er-Rajy M, Ali Eltayb W, Kara M, Imtara H, Zarougui S, Al-Hoshani N, Hamadi A, Elhallaoui M. An in-silico investigation based on molecular simulations of novel and potential brain-penetrant GluN2B NMDA receptor antagonists as anti-stroke therapeutic agents. J Biomol Struct Dyn 2024; 42:6174-6188. [PMID: 37428078 DOI: 10.1080/07391102.2023.2232024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
GluN2B-induced activation of NMDA receptors plays a key function in central nervous system (CNS) disorders, including Parkinson, Alzheimer, and stroke, as it is strongly involved in excitotoxicity, which makes selective NMDA receptor antagonists one of the potential therapeutic agents for the treatment of neurodegenerative diseases, especially stroke. The present study aims to examine a structural family of thirty brain-penetrating GluN2B N-methyl-D-aspartate (NMDA) receptor antagonists, using virtual computer-assisted drug design (CADD) to discover highly candidate drugs for ischemic strokes. Initially, the physicochemical and ADMET pharmacokinetic properties confirmed that C13 and C22 compounds were predicted as non-toxic inhibitors of CYP2D6 and CYP3A4 cytochromes, with human intestinal absorption (HIA) exceeding 90%, and designed to be as efficient central nervous system (CNS) agents due to the highest probability to cross the blood-brain barrier (BBB). Compared to ifenprodil, a co-crystallized ligand complexed with the transport protein encoded as 3QEL.pdb, we have noticed that C13 and C22 chemical compounds were defined by good ADME-Toxicity profiles, meeting Lipinski, Veber, Egan, Ghose, and Muegge rules. The molecular docking results indicated that C22 and C13 ligands react specifically with the amino acid residues of the NMDA receptor subunit GluN1 and GluN2B. These intermolecular interactions produced between the candidate drugs and the targeted protein in the B chain remain stable over 200 nanoseconds of molecular dynamics simulation time. In conclusion, C22 and C13 ligands are highly recommended as anti-stroke therapeutic drugs due to their safety and molecular stability towards NMDA receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Sciences and Technology, Shendi University, Shendi, Sudan
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, Jenin, Palestine
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
El Fadili M, Er-Rajy M, Mujwar S, Ajala A, Bouzammit R, Kara M, Abuelizz HA, Er-Rahmani S, Elhallaoui M. In silico insights into the design of novel NR2B-selective NMDA receptor antagonists: QSAR modeling, ADME-toxicity predictions, molecular docking, and molecular dynamics investigations. BMC Chem 2024; 18:142. [PMID: 39085870 PMCID: PMC11293250 DOI: 10.1186/s13065-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Based on a structural family of thirty-two NR2B-selective N-Methyl-D-Aspartate receptor (NMDAR) antagonists, two phenylpiperazine derivatives labeled C37 and C39 were conceived thanks to molecular modeling techniques, as novel NMDAR inhibitors exhibiting the highest analgesic activities (of pIC50 order) against neuropathic pain, with excellent ADME-toxicity profiles, and good levels of molecular stability towards the targeted protein of NMDA receptor. Initially, the quantitative structure-activity relationships (QSARs) models were developed using multiple linear regression (MLR), partial least square regression (PLSR), multiple non-linear regression (MNLR), and artificial neural network (ANN) techniques, revealing that analgesic activity was strongly correlated with dipole moment, octanol/water partition coefficient, Oxygen mass percentage, electronegativity, and energy of the lowest unoccupied molecular orbital, whose the correlation coefficients of generated models were: 0.860, 0.758, 0.885 and 0.977, respectively. The predictive capacity of each model was evaluated by an external validation with correlation coefficients of 0.703, 0.851, 0.778, and 0.981 respectively, followed by a cross-validation technique with the leave-one-out procedure (CVLOO) with Q2cv of 0.785, more than Y-randomization test, and applicability domain (AD), in addition to Fisher's and Student's statistical tests. Thereafter, ten novel molecules were designed based on MLR QSAR model, then predicted with their ADME-Toxicity profiles and subsequently examined for their similarity to the drug candidates. Finally, two of the most active compounds (C37 and C39) were chosen for molecular docking and molecular dynamics (MD) investigations during 100 ns of MD simulation time in complex with the targeted protein of NMDA receptor (5EWJ.pdb).
Collapse
Affiliation(s)
- Mohamed El Fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco.
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Abduljelil Ajala
- Department of chemistry, Faculty of physical sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic, Molecular Materials and Environment (LIMOME), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorization of Naturals Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara Er-Rahmani
- Dipartimento di Chimica, Università di Torino, Torino, 10125, Italy
| | - Menana Elhallaoui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
6
|
Moussaoui M, Baammi S, Soufi H, Baassi M, El Allali A, Belghiti ME, Daoud R, Belaaouad S. QSAR, ADMET, molecular docking, and dynamics studies of 1,2,4-triazine-3(2H)-one derivatives as tubulin inhibitors for breast cancer therapy. Sci Rep 2024; 14:16418. [PMID: 39013949 PMCID: PMC11252338 DOI: 10.1038/s41598-024-66877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Breast cancer remains a leading cause of cancer-related deaths among women globally, necessitating the development of more effective therapeutic agents with minimal side effects. This study explores novel 1,2,4-triazine-3(2H)-one derivatives as potential inhibitors of Tubulin, a pivotal protein in cancer cell division, highlighting a targeted approach in cancer therapy. Using an integrated computational approach, we combined quantitative structure-activity relationship (QSAR) modeling, ADMET profiling, molecular docking, and molecular dynamics simulations to evaluate and predict the efficacy and stability of these compounds. Our QSAR models, developed through rigorous statistical analysis, revealed that descriptors such as absolute electronegativity and water solubility significantly influence inhibitory activity, achieving a predictive accuracy (R2) of 0.849. Molecular docking studies identified compounds with high binding affinities, particularly Pred28, which exhibited the best docking score of - 9.6 kcal/mol. Molecular dynamics simulations conducted over 100 ns provided further insights into the stability of these interactions. Pred28 demonstrated notable stability, with the lowest root mean square deviation (RMSD) of 0.29 nm and root mean square fluctuation (RMSF) values indicative of a tightly bound conformation to Tubulin. The novelty of this work lies in its methodological rigor and the integration of multiple advanced computational techniques to pinpoint compounds with promising therapeutic potential. Our findings advance the current understanding of Tubulin inhibitors and open avenues for the synthesis and experimental validation of these compounds, aiming to offer new solutions for breast cancer treatment.
Collapse
Affiliation(s)
- Mohamed Moussaoui
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Casablanca, Morocco.
| | - Soukayna Baammi
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Hatim Soufi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mouna Baassi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Casablanca, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - M E Belghiti
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratory of Nernest Technology, 163 Willington Street, Sherbrook, QC, J1H5C7, Canada
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Said Belaaouad
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
7
|
Arora C, Madaan K, Mehta S, Singh R. Exploring isoindolin-1-ones as potential CDK7 inhibitors using cheminformatic tools. In Silico Pharmacol 2024; 12:51. [PMID: 38845825 PMCID: PMC11150237 DOI: 10.1007/s40203-024-00225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
In women who die from cancer, breast cancer is the most common cause of death. The development of small molecular scaffolds as specific Cyclin-dependent kinase (CDK) inhibitors is a promising strategy in the discovery of anti-breast cancer drugs. Isoindolin-1-ones are heterocyclic compounds with useful therapeutic properties. In this study, a library of 48 isoindolinones has been virtually screened by molecular docking that showed high binding affinity up to - 10.1 kcal/mol and conventional hydrogen bonding interactions with active amino acid residues of CDK7. The molecular dynamics simulation (MDS), fragment molecular orbital (FMO), density functional theory (DFT), and pharmacokinetics studies of the best two docked scored ligands 7 and 14 have been studied. Examining the ligand root mean square deviation and hydrogen bonding occupancy of the 100 ns MDS trajectory, both ligands 7 and 14 showed docked pose stability. FMO calculations displayed that LYS139 and LYS41 are majorly contributing to the binding interactions with ligands 7 and 14 in the docked poses. DFT studies of ligands 7 and 14 showed high values of global softness and low values of global hardness and chemical potential thus displaying chemically reactive soft molecules and this influences their anti-cancer activity. Our hits exhibited superior qualities to known CDK7 inhibitors, according to the comprehensive pharmacokinetic parameters that were predicted. The results indicate that isoindolin-1-one moieties are good candidates for anti-cancer action and could serve as effective CDK7 inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00225-0.
Collapse
Affiliation(s)
- Chahat Arora
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042 India
| | - Kunal Madaan
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042 India
| | - Saurabh Mehta
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042 India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042 India
| |
Collapse
|
8
|
Zarougui S, Er-Rajy M, Faris A, Imtara H, El fadili M, Qurtam AA, Nasr FA, Al-Zharani M, Elhallaoui M. 3D computer modeling of inhibitors targeting the MCF-7 breast cancer cell line. Front Chem 2024; 12:1384832. [PMID: 38887699 PMCID: PMC11181028 DOI: 10.3389/fchem.2024.1384832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on developing new inhibitors for the MCF-7 cell line to contribute to our understanding of breast cancer biology and various experimental techniques. 3D QSAR modeling was used to design new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives with good characteristics. Two robust 3D-QSAR models were developed, and their predictive capacities were confirmed through high correlations [CoMFA (Q2 = 0.62, R 2 = 0.90) and CoMSIA (Q2 = 0.71, R 2 = 0.88)] via external validations (R2 ext = 0.90 and R2 ext = 0.91, respectively). These successful evaluations confirm the potential of the models to provide reliable predictions. Six candidate inhibitors were discovered, and two new inhibitors were developed in silico using computational methods. The ADME-Tox properties and pharmacokinetic characteristics of the new derivatives were evaluated carefully. The interactions between the new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives and the protein ERα (PDB code: 4XO6) were highlighted by molecular docking. Additionally, MM/GBSA calculations and molecular dynamics simulations provided interesting information on the binding stabilities between the complexes. The pharmaceutical characteristics, interactions with protein, and stabilities of the inhibitors were examined using various methods, including molecular docking and molecular dynamics simulations over 100 ns, binding free energy calculations, and ADME-Tox predictions, and compared with the FDA-approved drug capivasertib. The findings indicate that the inhibitors exhibit significant binding affinities, robust stabilities, and desirable pharmaceutical characteristics. These newly developed compounds, which act as inhibitors to mitigate breast cancer, therefore possess considerable potential as prospective drug candidates.
Collapse
Affiliation(s)
- Sara Zarougui
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Er-Rajy
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdelmoujoud Faris
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamada Imtara
- Faculty of Medicine, Arab American University Palestine, Jenin, Palestine
| | - Mohamed El fadili
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ashraf Ahmed Qurtam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Menana Elhallaoui
- Laboratory of Engineering, Modelisation and Systems Analysis, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
9
|
Aloui M, Er-rajy M, Imtara H, Goudzal A, Zarougui S, El fadili M, Arthur DE, Mothana RA, Noman OM, Tarayrah M, Menana E. QSAR modelling, molecular docking, molecular dynamic and ADMET prediction of pyrrolopyrimidine derivatives as novel Bruton's tyrosine kinase (BTK) inhibitors. Saudi Pharm J 2024; 32:101911. [PMID: 38226346 PMCID: PMC10788635 DOI: 10.1016/j.jsps.2023.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
In recent years, there has been a focus on developing and discovering novel Bruton's tyrosine kinase (BTK) inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new candidate molecules is strongly recommended to classify these molecules as promising candidates for new anticancer agents specifically designed to target Bruton's tyrosine kinase (BTK) inhibition.
Collapse
Affiliation(s)
- Mourad Aloui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Er-rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamada Imtara
- Faculty of Sciences, Arab American University Palestine, Jenin 44862, Palestine
| | - Amina Goudzal
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Sidi Mohamed Ben Abdellah University, Faculty of Sciences, Fez, Morocco
| | - Sara Zarougui
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed El fadili
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - David E. Arthur
- Department of Pure and Applied Chemistry, University of Maiduguri, Nigeria
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Tarayrah
- Groupe Hospitalier Cochin-Port Royal, Faculty of Medicine, Institut Cochin, Paris University, CNRS, IN-SERM, 75000, Paris, France
| | - Elhalaoui Menana
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
10
|
Singh V, Mujwar S, Singh M, Singh T, Ahmad SF. Computational Studies to Understand the Neuroprotective Mechanism of Action Basil Compounds. Molecules 2023; 28:7005. [PMID: 37894484 PMCID: PMC10609097 DOI: 10.3390/molecules28207005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present a computational protocol to extricate the underlying mechanism of action of basil compounds in neuroprotective effects. Molecular docking-based investigation of the chemical interactions between selected bioactive compounds from basil and key neuroprotective targets, including AChE, GSK3β, γ-secretase, and sirtuin2. Our results demonstrate that basil compound myricerone caffeoyl ester possesses a high affinity of -10.01 and -8.85 kcal/mol against GSK3β and γ-secretase, respectively, indicating their potential in modulating various neurobiological processes. Additionally, molecular dynamics simulations were performed to explore the protein-ligand complexes' stability and to analyze the bound basil compounds' dynamic behavior. This comprehensive computational investigation enlightens the putative mechanistic basis for the neuroprotective effects of basil compounds, providing a rationale for their therapeutic use in neurodegenerative disorders after further experimental validation.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77807, USA;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Kumar M, Rani I, Mujwar S, Narang R, Devgun M, Khokra SL. In-Silico Design, Synthesis, and Pharmacological Evaluation of Oxadiazole-Based Selective Cyclo-oxygenase-2 Inhibitors. Assay Drug Dev Technol 2023; 21:166-179. [PMID: 37318837 DOI: 10.1089/adt.2022.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
A series of oxadiazole-based five-membered heterocyclic derivatives was designed and synthesized with the intent of exclusive cyclo-oxygenase-2 (COX-2) inhibition to acquire anti-inflammatory activity without the presence of gastric toxicity. Oxadiazole-based novel analogs were designed by using bioisosteric substitutions and were screened against the macromolecular target by using docking-based virtual screening to identify their potential inhibitors. These selective COX-2 inhibitors were further evaluated for their stability within the binding cavity of macromolecular complex by performing molecular dynamic simulation for 100 ns. Selected compounds were synthesized by using Naphthalene-2-yl-acetic acid as a starting material based on the fundamental structure of naphthalene. The naphthalene ring and methylene bridge of naphthalene-2-yl-acetic acid were retained in the rational molecular design by replacing the carboxyl group with biologically significant groups like 1,3,4-oxadiazoles, with the goal of obtaining a novel, superior, and relatively safe anti-inflammatory molecule with better efficacy and optimized pharmacokinetics. Anti-inflammatory as well as analgesic properties of the compounds were evaluated experimentally for their pharmacological efficiency.
Collapse
Affiliation(s)
- Manish Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Isha Rani
- Spurthy College of Pharmacy, Bengaluru, Karnataka, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|