1
|
Ribeiro AA, Santos JAN, Salem PPDO, Santos MFC, Bueno PCP, Lago JHG, Dias DF, Chagas de Paula DA, Soares MG. Chemical annotation of the infusion of Jungia floribunda Less and its inhibitory potential on the elastase enzyme. Nat Prod Res 2025; 39:1380-1386. [PMID: 38088044 DOI: 10.1080/14786419.2023.2293149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 03/04/2025]
Abstract
Jungia floribunda Less. is a shrub belonging to the Asteraceae. The infusion of its leaves has been used, in folk medicine of several South American countries, as anti-inflammatory and hypoglycaemic agent. In the present study, the infusion of leaves from J. floribunda was obtained and its chemical composition was determined by UHPLC-MS associated with molecular network allowing the annotation of flavonoids, sesquiterpene lactones, coumarins, and chlorogenic acid derivatives. Besides, in vitro elastase activity assay was carried out with the infusion. As observed, elastase was inhibited at concentrations ranging from 15 to 240 µg/mL, reaching to 71% of inhibition at the maximum of evaluated concentration. Given that species of plants are promising sources for the discovery of new drugs, these results corroborate the infusion of J. floribunda as a potential source of bioactive compounds for the discovery of new inhibitors for elastase, besides its ethnopharmacological aspects.
Collapse
Affiliation(s)
- Andreza Aparecida Ribeiro
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Jorge Alexandre Nogueira Santos
- Department of Biochemistry, Federal Institute of Education, Science and Technology of the South of Minas Gerais - IFSULDEMINAS, Campus Inconfidentes, Minas Gerais, Brazil
| | - Paula Pio de Oliveira Salem
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Mario Ferreira Conceição Santos
- Department of Chemistry and Physics, Exact, Natural and Health Sciences Center, Federal University of Espirito Santo - UFES, Alegre, Espirito Santo, Brazil
| | - Paula Carolina Pires Bueno
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | | | - Danielle Ferreira Dias
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Daniela Aparecida Chagas de Paula
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
2
|
Shah M, Arumugam S. Exploring putative drug properties associated with TNF-alpha inhibition and identification of potential targets in cardiovascular disease using machine learning-assisted QSAR modeling and virtual reverse pharmacology approach. Mol Divers 2024; 28:2263-2287. [PMID: 38954070 DOI: 10.1007/s11030-024-10921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Cardiovascular disease is a chronic inflammatory disease with high mortality rates. TNF-alpha is pro-inflammatory and associated with the disease, but current medications have adverse effects. Therefore, efficient inhibitors are urgently needed as alternatives. This study represents a structural-activity relationship investigation of TNF-alpha, curated from the ChEMBL database. Exploratory data analysis was performed to visualize the physicochemical properties of different bioactivity groups. The extracted molecules were subjected to PubChem and SubStructure fingerprints, and a QSAR-based Random Forest (QSAR-RF) model was generated using the WEKA tool. The QSAR random Forest model was built based on the SubStructure fingerprint with a correlation coefficient of 0.992 and 0.716 as the respective tenfold cross-validation scores. The variance important plot (VIP) method was used to extract the important features for TNF-alpha inhibition. The Substructure-based QSAR-RF (SS-QSAR-RF) model was validated using molecules from PubChem and ZINC databases. The generated model also predicts the pIC50 value of the molecules selected from the docking study followed by molecular dynamic simulation with the time step of 100 ns. Through virtual reverse pharmacology, we determined the main drug targets from the top four hit compounds obtained via molecular docking study. Our analysis included an integrated bioinformatics approach to pinpoint crucial targets like EGRF, HSP900A1, STAT3, PSEN1, AKT1, and MDM2. Further, GO and KEGG pathways analysis identified relevant cardiovascular disease-related pathways for the hub gene involved. However, this study provides valuable insights, it is important to note that it lacks experimental application. Future research may benefit from conducting in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- Manisha Shah
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sivakumar Arumugam
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Xiang J, Mlambo R, Dube P, Machona O, Shaw I, Seid Y, He Y, Luo M, Hong T, He B, Zhou W, Tan S. The obesogenic side of Genistein. Front Endocrinol (Lausanne) 2023; 14:1308341. [PMID: 38098865 PMCID: PMC10720314 DOI: 10.3389/fendo.2023.1308341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Genistein (GN) has been highly recommended for its medicinal properties like anticancer, antidiabetic, antihyperlipidemic, antiviral, and antioxidant activities among others. Recently, scientists realized that Genistein is an endocrine disruptor. It is an obesogen that interferes with the endocrine system causing obesity through many mechanisms like inducing adipocyte differentiation, lipid accumulation, and transformation of some stem cells into adipocytes (bone marrow mesenchymal stem cells for example) in vitro. Animal studies show that GN upregulates genes associated with adipogenesis like CCAAT/enhancer binding protein alpha (Cebpα), CCAAT/enhancer binding protein beta (Cebpβ), and PPARγ. In silico studies reveal a strong binding affinity for estrogen receptors. All these findings were contingent on concentration and tissues. It is beyond dispute that obesity is one of the most frustrating medical conditions under the sun. The pathophysiology of this disease was first attributed to a high-calorie diet and lack of physical activity. However, studies proved that these two factors are not enough to account for obesity in both children and adults. This mini review highlights how Genistein interaction with the peroxisome proliferator-activated receptor gamma protein can cause obesity.
Collapse
Affiliation(s)
- Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Progress Dube
- Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Oleen Machona
- Simon Mazorodze School of Medical and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yimer Seid
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, China
| | - Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Nayak SS, Naidu A, Sudhakaran SL, Vino S, Selvaraj G. Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease. J Pers Med 2023; 13:664. [PMID: 37109050 PMCID: PMC10142859 DOI: 10.3390/jpm13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Collapse
Affiliation(s)
- Smruti Sudha Nayak
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sajitha Lulu Sudhakaran
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundararajan Vino
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Department of Chemistry and Biochemistry, Concordia University-Loyola Campus, Montreal, QC H4B 1R6, Canada
| |
Collapse
|