1
|
Alshehri MA, Asiri SA, Helmi N, Baeissa HM, Hamadi A, Alzahrani A, Alghamdi RM, Rafeeq MM, Alharbi ZM, Kamal MA. Unrevealing the multitargeted potency of 3-1-BCMIYPPA against lung cancer structural maintenance and suppression proteins through pharmacokinetics, QM-DFT, and multiscale MD simulation studies. PLoS One 2024; 19:e0303784. [PMID: 38905286 PMCID: PMC11192378 DOI: 10.1371/journal.pone.0303784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Å with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saeed A. Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Abdulrahman Alzahrani
- Department of Applied Medical Sciences, Applied College, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - Rashed Mohammed Alghamdi
- Department of Laboratory Medicine, Faculty of Applied College, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh. King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zeyad M. Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Binshaya AS, Alkahtani OS, Aldakheel FM, Hjazi A, Almasoudi HH. Structure-based multitargeted docking screening, pharmacokinetics, DFT, and dynamics simulation studies reveal mitoglitazone as a potent inhibitor of cellular survival and stress response proteins of lung cancer. Med Oncol 2024; 41:101. [PMID: 38546811 DOI: 10.1007/s12032-024-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
Lung cancer is a disease in which lung cells grow abnormally and uncontrollably, and the cause of it is direct smoking, secondhand smoke, radon, asbestos, and certain chemicals. The worldwide leading cause of death is lung cancer, which is responsible for more than 1.8 million deaths yearly and is expected to rise to 2.2 million by 2030. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for about 80% and small cell lung cancer (SCLC), which is more aggressive than NSCLC and is often diagnosed later and accounts for 20% of cases. The global concern for lung cancer demands efficient drugs with the slightest chance of developing resistance, and the idea of multitargeted drug designing came up with the solution. In this study, we have performed multitargeted molecular docking studies of Drug Bank compounds with HTVS, SP and XP algorithms followed by MM\GBSA against the four proteins of lung cancer cellular survival and stress responses, which revealed Mitoglitazone as a multitargeted inhibitor with a docking and MM\GBSA score ranging from - 5.784 to - 7.739 kcal/mol and - 25.81 to - 47.65kcal/mol, respectively. Moreover, we performed pharmacokinetics studies and QM-based DFT analysis, showing suitable candidate and interaction pattern analysis revealed the most count of interacting residues was 4GLY, 5PHE, 6ASP, 6GLU, 6LYS, and 6THR. Further, the results were validated with SPC water model-based MD simulation for 100ns in neutralised condition, showing the cumulative deviation and fluctuation < 2Å with many intermolecular interactions. The whole analysis has suggested that Mitoglitazone can be used as a multitargeted inhibitor against lung cancer-however, experimental studies are needed before human use.
Collapse
Affiliation(s)
- Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Omar Saad Alkahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| |
Collapse
|
3
|
Hakami MA, Hazazi A, Alsulami MO, Alsaiari AA. Mitoxantrone 2HCl's adroit activity against cervical cancer replication and maintenance proteins: a multitargeted approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38517073 DOI: 10.1080/07391102.2024.2329796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Cervical cancer poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide and resulting in approximately 300,000 deaths yearly, predominantly caused by high-risk human papillomavirus strains (HPV), mainly types 16 and 18. The scenario poses the urgent need of the hour to develop effective treatment strategies that can address the complexity of cervical cancer and multitargeted inhibitor designing that holds promise as it can simultaneously target multiple proteins and pathways involved in its progression and have the potential to enhance treatment efficacy, reduce the likelihood of drug resistance. In this study, we have performed multitargeted molecular docking of FDA-approved drugs against cervical cancer replication and maintenance proteins- Xenopus kinesin-like protein-2 (3KND), cell division cycle protein-20 (4N14), MCM2-histone complex (4UUZ) and MCM6 Minichromosome maintenance (2KLQ) with HTVS, SP and XP algorithms and have obtained the docking and MM\GBSA score ranging from -8.492 to -5.189 Kcal/mol and -58.16 to -39.07 Kcal/mol. Further, the molecular interaction fingerprints identified ALA, THR, SER, ASN, LEU, and ILE were among the most interacted residues, leaning towards hydrophobic and polar amino acids. The pharmacokinetics and DFT of the compound have shown promising results. The complexes were simulated for 100 ns to study the stability by computing the deviation, fluctuations, and intermolecular interactions formed during the simulation. This study produced promising results, satisfying the criteria that Mitoxantrone 2HCl can be a multitargeted inhibitor against cervical cancer proteins-however, experimental validation is a must before human use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Mishal Olayan Alsulami
- Cytogenetics and Molecular Genetics, Central Military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
4
|
Almasoudi HH, Mashraqi MM, Alshamrani SA, Alharthi AA, Alsalmi O, Nahari MH, Al-Mansour FSH, Alhazmi AYM. Structure-Based In Silico Approaches Reveal IRESSA as a Multitargeted Breast Cancer Regulatory, Signalling, and Receptor Protein Inhibitor. Pharmaceuticals (Basel) 2024; 17:208. [PMID: 38399423 PMCID: PMC10891917 DOI: 10.3390/ph17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer begins in the breast cells, mainly impacting women. It starts in the cells that line the milk ducts or lobules responsible for producing milk and can spread to nearby tissues and other body parts. In 2020, around 2.3 million women across the globe received a diagnosis, with an estimated 685,000 deaths. Additionally, 7.8 million women were living with breast cancer, making it the fifth leading cause of cancer-related deaths among women. The mutational changes, overexpression of drug efflux pumps, activation of alternative signalling pathways, tumour microenvironment, and cancer stem cells are causing higher levels of drug resistance, and one of the major solutions is to identify multitargeted drugs. In our research, we conducted a comprehensive screening using HTVS, SP, and XP, followed by an MM/GBSA computation of human-approved drugs targeting HER2/neu, BRCA1, PIK3CA, and ESR1. Our analysis pinpointed IRESSA (Gefitinib-DB00317) as a multitargeted inhibitor for these proteins, revealing docking scores ranging from -4.527 to -8.809 Kcal/mol and MM/GBSA scores between -49.09 and -61.74 Kcal/mol. We selected interacting residues as fingerprints, pinpointing 8LEU, 6VAL, 6LYS, 6ASN, 5ILE, and 5GLU as the most prevalent in interactions. Subsequently, we analysed the ADMET properties and compared them with the standard values of QikProp. We extended our study for DFT computations with Jaguar and plotted the electrostatic potential, HOMO and LUMO regions, and electron density, followed by a molecular dynamics simulation for 100 ns in water, showing an utterly stable performance, making it a suitable drug candidate. IRESSA is FDA-approved for lung cancer, which shares some pathways with breast cancers, clearing the hurdles of multitargeted drugs against breast and lung cancer. This has the potential to be groundbreaking; however, more studies are needed to concreate IRESSA's role.
Collapse
Affiliation(s)
- Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (H.H.A.); (M.M.M.); (S.A.A.); (M.H.N.); (F.S.H.A.-M.)
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (H.H.A.); (M.M.M.); (S.A.A.); (M.H.N.); (F.S.H.A.-M.)
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (H.H.A.); (M.M.M.); (S.A.A.); (M.H.N.); (F.S.H.A.-M.)
| | - Afaf Awwadh Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (O.A.)
| | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (O.A.)
| | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (H.H.A.); (M.M.M.); (S.A.A.); (M.H.N.); (F.S.H.A.-M.)
| | - Fares Saeed H. Al-Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (H.H.A.); (M.M.M.); (S.A.A.); (M.H.N.); (F.S.H.A.-M.)
| | | |
Collapse
|
5
|
Hakami MA, Hazazi A, Albloui F, Gharib AF, Alsaeedi FA, Abdulaziz O, Alhazmi AY, Alsaiari AA. Delineated 3-1-BenCarMethInYlPro-Phosphonic Acid's Adroit Activity against Lung Cancer through Multitargeted Docking, MM\GBSA, QM-DFT and Multiscale Simulations. Int J Mol Sci 2024; 25:592. [PMID: 38203761 PMCID: PMC10779231 DOI: 10.3390/ijms25010592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is a pervasive and challenging disease with limited treatment options, with global health challenges often present with complex molecular profiles necessitating the exploration of innovative therapeutic strategies. Single-target drugs have shown limited success due to the heterogeneity of this disease. Multitargeted drug designing is imperative to combat this complexity by simultaneously targeting multiple target proteins and pathways, which can enhance treatment efficacy and overcome resistance by addressing the dynamic nature of the disease and stopping tumour growth and spread. In this study, we performed the molecular docking studies of Drug Bank compounds with a multitargeted approach against crucial proteins of lung cancer such as heat shock protein 5 (BIP/GRP78) ATPase, myosin 9B RhoGAP, EYA2 phosphatase inhibitor, RSK4 N-terminal kinase, and collapsin response mediator protein-1 (CRMP-1) using HTVS, SP with XP algorithms, and poses were filtered using MM\GBSA which identified [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BenCarMethIn YlPro-Phosphonic Acid) (DB02504) as multitargeted drug candidate with docking and MM\GBSA score ranges from -5.83 to -10.66 and -7.56 to -50.14 Kcal/mol, respectively. Further, the pharmacokinetic and QM-based DFT studies have shown complete acceptance results, and interaction fingerprinting reveals that ILE, GLY, VAL, TYR, LEU, and GLN were among the most interacting residues. The 100 ns MD simulation in the SPC water model with NPT ensemble showed stable performance with deviation and fluctuations <2 Å with huge interactions, making it a promising multitargeted drug candidate; however, experimental studies are needed before use.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia; (A.H.); (F.A.)
| | - Fawaz Albloui
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia; (A.H.); (F.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| | - Fouzeyyah Ali Alsaeedi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| | - Abdulfattah Y. Alhazmi
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| |
Collapse
|
6
|
Almasoudi HH, Nahari MH, Alhazmi AYM, Almasabi SHA, Al-Mansour FSH, Hakami MA. Delineating Pixantrone Maleate's adroit activity against cervical cancer proteins through multitargeted docking-based MM\GBSA, QM-DFT and MD simulation. PLoS One 2023; 18:e0295714. [PMID: 38100507 PMCID: PMC10723688 DOI: 10.1371/journal.pone.0295714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Cervical cancer poses a substantial worldwide health challenge, especially in low- and middle-income nations, caused by high-risk types of human papillomavirus. It accounted for a significant percentage of cancer-related deaths among women, particularly in areas with limited healthcare resources, necessitating innovative therapeutic approaches, and single-targeted studies have produced significant results, with a considerable chance of developing resistance. Therefore, the multitargeted studies can work as a beacon of hope. This study is focused on performing the multitargeted molecular docking of FDA-approved drugs with the three crucial proteins TBK1, DNA polymerase epsilon, and integrin α-V β-8 of cervical cancer. The docking studies using multisampling algorithms HTVS, SP, and XP reveal Pixantrone Maleate (DB06193) as a multitargeted inhibitor with docking scores of -8.147, -8.206 and -7.31 Kcal/mol and pose filtration with MM\GBSA computations with scores -40.55, -33.67, and -37.64 Kcal/mol. We also have performed QM-based DFT and pharmacokinetics studies of the compound and compared it with the standard values, which results in the compound being entirely suitable against cervical cancer proteins. The interaction fingerprints have revealed that PHE, VAL, SER and ALA are the residues among most interactions. We also explore the stability of the multitargeted potential of Pixantrone Maleate through 100ns MD simulations and investigate the RMSD, RMSF and intermolecular interactions between all three proteins-ligand complexes. All computational studies favour Pixantrone Maleate as a multitargeted inhibitor of the TBK1, DNA polymerase epsilon, and integrin α-V β-8 and can be validated experimentally before use.
Collapse
Affiliation(s)
- Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | | | - Saleh Hussain A. Almasabi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Fares Saeed H. Al-Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Murad H, Rafeeq M. Cheminformatics approach for identification of N-HyMenatPimeMelly as a novel potential ligand against RAS and renal chloride channel. J Biomol Struct Dyn 2023; 42:12836-12850. [PMID: 37882351 DOI: 10.1080/07391102.2023.2273439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Some angiotensin receptor (AR) blockers interfere with the renal chloride channel (ClC-K), which plays an important role in urine concentration. Identifying ligands targeting this channel, whether activating or blocking, is highly desirable because it could open the way for interventions that modulate their activity. In this study, the Asinex (BioDesign) complete library was screened to identify a compound with favorable physicochemical and pharmacokinetic properties, which have both AR blocking and ClC-Ka-modulating activities to present it as a novel potential oral candidate which could be useful for treatment of salt-sensitive hypertension without major ClC-K affection. A compound, N-{[4-Hydroxy-1-(2-methyl-1,6-naphthyridin-4-yl)-4-piperidinyl]methyl}-N-methyl-L-lysinamide (N-HyMenatPimeMelly) (Chem Spider ID 68416221), was identified as a potent potential oral ligand of the renin-angiotensin system (RAS) and ClC-Ka with docking scores ranging from -10.978 to -7.324 with the four selected proteins (4YAY: AR type 1, 2PFI: Cytoplasmic domain of ClC-Ka, 6JOD: AR type 2 and 6M0J: Angiotensin-converting enzyme 2). The protein-ligand complex was used to perform molecular dynamics (MD) simulation for 100 ns. The QikProp and SwissADME tools' results showed that the compound has ADME/T and drug-likeness properties, which are within the permissible ranges for 95% of known drugs. The density functional theory (DFT) analysis and MD simulation extended the study toward computational validation. Throughout the study, N-HyMenatPimeMelly has shown good interactions and stable performance in MD simulation and DFT analysis. The whole analysis has produced promising results, and N-HyMenatPimeMelly can be treated as a novel potential RAS and ClC-K oral ligand, however, experimental validation is needed before human use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hussam Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Misbahudin Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Alshehri MA, Asiri SA, Alzahrani A, Alazragi RS, Alqahtani LS, Alqosaibi AI, Alnamshan MM, Alam Q, Rafeeq MM. Multitargeted inhibitory effect of Mitoxantrone 2HCl on cervical cancer cell cycle regulatory proteins: a multitargeted docking-based MM\GBSA and MD simulation study. Med Oncol 2023; 40:337. [PMID: 37864019 DOI: 10.1007/s12032-023-02203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Cervical cancer remains a significant global health concern that starts in the cervix, the lower part of the uterus that connects to the vagina and is caused by the human papillomavirus (HPV), necessitating the development of effective multitargeted effective and resistance-proof therapies. In early-stage cervical cancer may not show any symptoms, however, as the cancer progresses, some people may experience- abnormal vaginal bleeding, watery or bloody vaginal discharge, pain in the pelvis or lower back, pain during sex, and frequent and painful urination. In this study, we screened the complete FDA-approved drug library using a multitargeted inhibitory approach against four cervical cancer proteins, namely mitotic arrest deficient -2, DNA polymerase epsilon B-subunit, benzimidazole-related -1, and threonine-protein kinase-1 which crucially plays its role for the in its development process. We employed the HTVS, SP and XP algorithms for efficient filtering and screening that helped to identify Mitoxantrone 2HCl against all of them with docking and MM\GBSA scores ranging from - 11.63 to - 7.802 kcal/mol and - 74.38 to - 47.73 kcal/mol, respectively. We also evaluated the interaction patterns of each complex and the pharmacokinetics properties that helped gain insight into interactions. Subsequently, we performed multiscale MD simulations for 100 ns to understand the dynamic behaviour and stability of the Mitoxantrone 2HCl -protein complexes that revealed the formation of stable drug-protein complexes and provided insights into the molecular interactions that contribute to Mitoxantrone's inhibitory effects on these proteins and can be a better drug for cervical cancer. However, experimental studies of these findings could pave the way for therapies to combat cervical cancer effectively.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P. O. Box 7 1988, Najran, 61441, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P. O. Box 7 1988, Najran, 61441, Saudi Arabia
| | - Abdulrahman Alzahrani
- Department of Applied Medical Sciences, Applied College, Al-Baha University, Al-Baha City, Saudi Arabia
| | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Amany I Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Mashael M Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Qamre Alam
- Molecular Genomics and Precision Department, ExpressMed Diagnostics and Research, Zinj, Kingdom of Bahrain
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|