1
|
Harding CD, Walker KMM, Hackett TD, Herwig A, Peirson SN, Vyazovskiy VV. Ultrasonic vocalisation rate tracks the diurnal pattern of activity in winter phenotype Djungarian hamsters (Phodopus sungorus). J Comp Physiol B 2024; 194:383-401. [PMID: 38733409 PMCID: PMC11233387 DOI: 10.1007/s00360-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Vocalisations are increasingly being recognised as an important aspect of normal rodent behaviour yet little is known of how they interact with other spontaneous behaviours such as sleep and torpor, particularly in a social setting. We obtained chronic recordings of the vocal behaviour of adult male and female Djungarian hamsters (Phodopus sungorus) housed under short photoperiod (8 h light, 16 h dark, square wave transitions), in different social contexts. The animals were kept in isolation or in same-sex sibling pairs, separated by a grid which allowed non-physical social interaction. On approximately 20% of days hamsters spontaneously entered torpor, a state of metabolic depression that coincides with the rest phase of many small mammal species in response to actual or predicted energy shortages. Animals produced ultrasonic vocalisations (USVs) with a peak frequency of 57 kHz in both social and asocial conditions and there was a high degree of variability in vocalisation rate between subjects. Vocalisation rate was correlated with locomotor activity across the 24-h light cycle, occurring more frequently during the dark period when the hamsters were more active and peaking around light transitions. Solitary-housed animals did not vocalise whilst torpid and animals remained in torpor despite overlapping with vocalisations in social-housing. Besides a minor decrease in peak USV frequency when isolated hamsters were re-paired with their siblings, changing social contexts did not influence vocalisation behaviour or structure. In rare instances, temporally overlapping USVs occurred when animals were socially-housed and were grouped in such a way that could indicate coordination. We did not observe broadband calls (BBCs) contemporaneous with USVs in this paradigm, corroborating their correlation with physical aggression which was absent from our experiment. Overall, we find little evidence to suggest a direct social function of hamster USVs. We conclude that understanding the effects of vocalisations on spontaneous behaviours, such as sleep and torpor, will inform experimental design of future studies, especially where the role of social interactions is investigated.
Collapse
Affiliation(s)
- Christian D Harding
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, San Diego, USA.
| | - Kerry M M Walker
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
2
|
Haugg E, Herwig A, Diedrich V. Body Temperature and Activity Adaptation of Short Photoperiod-Exposed Djungarian Hamsters ( Phodopus sungorus): Timing, Traits, and Torpor. Front Physiol 2021; 12:626779. [PMID: 34305626 PMCID: PMC8294097 DOI: 10.3389/fphys.2021.626779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
To survive the Siberian winter, Djungarian hamsters (Phodopus sungorus) adjust their behavior, morphology, and physiology to maintain energy balance. The reduction of body mass and the improvement of fur insulation are followed by the expression of spontaneous daily torpor, a state of reduced metabolism during the resting phase to save additional energy. Since these complex changes require time, the upcoming winter is anticipated via decreasing photoperiod. Yet, the extent of adaptation and torpor use is highly individual. In this study, adaptation was triggered by an artificially changed light regime under laboratory conditions with 20°C ambient temperature and food and water ad libitum. Two approaches analyzed data on weekly measured body mass and fur index as well as continuously recorded core body temperature and activity during: (1) the torpor period of 60 hamsters and (2) the entire adaptation period of 11 hamsters, aiming to identify parameters allowing (1) a better prediction of torpor expression in individuals during the torpor period as well as (2) an early estimation of the adaptation extent and torpor proneness. In approach 1, 46 torpor-expressing hamsters had a median torpor incidence of 0.3, covering the spectrum from no torpor to torpor every day within one representative week. Torpor use reduced the body temperature during both photo- and scotophase. Torpor was never expressed by 14 hamsters. They could be identified by a high, constant body temperature during the torpor period and a low body mass loss during adaptation to a short photoperiod. Already in the first week of short photoperiod, approach 2 revealed that the hamsters extended their activity over the prolonged scotophase, yet with reduced scotophase activity and body temperature. Over the entire adaptation period, scotophase activity and body temperature of the scoto- and photophases were further reduced, later accompanied by a body mass decline and winter fur development. Torpor was expressed by those hamsters with the most pronounced adaptations. These results provide insights into the preconditions and proximate stimuli of torpor expression. This knowledge will improve experimental planning and sampling for neuroendocrine and molecular research on torpor regulation and has the potential to facilitate acute torpor forecasting to eventually unravel torpor regulation processes.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
3
|
Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research. Front Neurol 2021; 12:625334. [PMID: 33597916 PMCID: PMC7882611 DOI: 10.3389/fneur.2021.625334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to “dim” light), and ideas for reconsidering old data and designing new studies.
Collapse
Affiliation(s)
- Thijs J Walbeek
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Departments of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
4
|
Weinert D, Maibach V, Waterhouse J. Seasonal changes of thermoregulatory efficiency in Djungarian hamsters. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1434947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D. Weinert
- Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - V. Maibach
- Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - J. Waterhouse
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
5
|
Dumbell R, Petri I, Scherbarth F, Diedrich V, Schmid HA, Steinlechner S, Barrett P. Somatostatin Agonist Pasireotide Inhibits Exercise-Stimulated Growth in the Male Siberian Hamster (Phodopus sungorus). J Neuroendocrinol 2017; 29. [PMID: 27874965 DOI: 10.1111/jne.12448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023]
Abstract
The Siberian hamster (Phodopus sungorus) is a seasonal mammal, exhibiting a suite of physiologically and behaviourally distinct traits dependent on the time of year and governed by changes in perceived day length (photoperiod). These attributes include significant weight loss, reduced food intake, gonadal atrophy and pelage change with short-day photoperiod as in winter. The central mechanisms driving seasonal phenotype change during winter are mediated by a reduced availability of hypothalamic triiodothyronine (T3), although the downstream mechanisms responsible for physiological and behavioural changes are yet to be fully clarified. With access to a running wheel (RW) in short photoperiod, Siberian hamsters that have undergone photoperiod-mediated weight loss over-ride photoperiod-drive for reduced body weight and regain weight similar to a hamster held in long days. These changes occur despite retaining the majority of hypothalamic gene expression profiles appropriate for short-day hamsters. Utilising the somatostatin agonist pasireotide, we recently provided evidence for an involvement of the growth hormone (GH) axis in the seasonal regulation of bodyweight. In the present study, we employed pasireotide to test for the possible involvement of the GH axis in RW-induced body weight regulation. Pasireotide successfully inhibited exercise-stimulated growth in short-day hamsters and this was accompanied by altered hypothalamic gene expression of key GH axis components. Our data provide support for an involvement of the GH axis in the RW response in Siberian hamsters.
Collapse
Affiliation(s)
- R Dumbell
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - I Petri
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - F Scherbarth
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - V Diedrich
- University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - S Steinlechner
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Barrett
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Müller D, Hauer J, Schöttner K, Fritzsche P, Weinert D. Seasonal adaptation of dwarf hamsters (Genus Phodopus): differences between species and their geographic origin. J Comp Physiol B 2015; 185:917-30. [DOI: 10.1007/s00360-015-0926-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 11/28/2022]
|
7
|
Schöttner K, Schmidt M, Hering A, Schatz J, Weinert D. Short-day response in Djungarian hamsters of different circadian phenotypes. Chronobiol Int 2012; 29:430-42. [PMID: 22515562 DOI: 10.3109/07420528.2012.668506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Djungarian hamsters (Phodopus sungorus) bred at the authors' institute, a certain number of animals show activity patterns incompatible with proper entrainment of their endogenous circadian pacemaker to the environmental light-dark (LD) cycle. Even though the activity-offset in these animals is stably coupled to "light-on," activity-onset is increasingly delayed, leading to a compression of the activity time (α). If α falls below a critical value, the circadian rhythm in these so called delayed activity-onset (DAO) hamsters starts to free-run and finally breaks down. Animals then show an arrhythmic activity pattern (AR hamsters). Previous studies revealed the mechanisms of photic entrainment have deteriorated (DAO) or the suprachiasmatic nucleus (SCN) does not generate a rhythmic signal (AR). The aim of the present study was to investigate the consequences that these deteriorations have upon photoperiodic time measurement. Animals were bred and kept under standardized housing conditions with food and water ad libitum and a 14L/10D (long day, LD) regimen. Locomotor activity was recorded continuously using passive infrared motion detectors. Body mass, testes size, and fur coloration were measured weekly or biweekly to further quantify the photoperiodic reaction. In a first experiment, adult male wild-type (WT), DAO, and AR hamsters were transferred initially to a 16L/8D cycle. After 3-4 wks, the light period was shortened symmetrically by 8 h. After 14 wks, none of the DAO and AR hamsters, and only 1 of 8 WT hamsters showed short-day (SD) traits. Therefore, in a second experiment, hamsters were transferred to SD conditions (8L/16D cycle) for 8 wks directly from standard LD conditions. In 6 of 7 WT hamsters, activity time expanded, body mass and testes size decreased, and fur coloration changed from summer to winter pelage. In contrast, none of the DAO and AR hamsters displayed an SD response. In a third experiment, DAO and AR hamsters were kept in constant darkness (DD) for 8 and 14 wks. After 8 wks, DAO hamsters showed a similar photoperiodic reaction to WT hamsters that had been kept for 8 wks under SD conditions. However, the level of adaptation was still less compared to WT hamsters, but this difference was not apparent after 14 wks. In contrast, AR animals did not display any photoperiodic reaction, even after 14 wks in DD. Type VI phase response curves (PRCs) were constructed to better understand the mechanism behind the SD response. In WT hamsters, the photosensitive phase, where light pulses induce phase shifts, was lengthened in SD condition. In DAO hamsters, in contrast, the PRCs were similar under LD and SD conditions with a compressed photosensitive phase corresponding to α. Also, "light-on" induced only weak phase advances of activity-onset, insufficient to compensate for the long endogenous period. The results show that physiological mechanisms necessary for seasonal adaptation are working in DAO hamsters and that it is the inadequate interaction of the LD cycle with the SCN that prevents the photoperiodic reaction. AR hamsters, on the other hand, are incapable of measuring photoperiodic time due to a complete disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Konrad Schöttner
- Institute of Biology/Zoology, Martin-Luther-University Halle-Wittenberg, Germany
| | | | | | | | | |
Collapse
|
8
|
Portaluppi F, Smolensky MH, Touitou Y. ETHICS AND METHODS FOR BIOLOGICAL RHYTHM RESEARCH ON ANIMALS AND HUMAN BEINGS. Chronobiol Int 2010; 27:1911-29. [DOI: 10.3109/07420528.2010.516381] [Citation(s) in RCA: 973] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Warner A, Jethwa PH, Wyse CA, I'anson H, Brameld JM, Ebling FJP. Effects of photoperiod on daily locomotor activity, energy expenditure, and feeding behavior in a seasonal mammal. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1409-16. [PMID: 20200136 DOI: 10.1152/ajpregu.00279.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine whether the previously observed effects of photoperiod on body weight in Siberian hamsters were due to changes in the daily patterns of locomotor activity, energy expenditure, and/or feeding behavior. Adult males were monitored through a seasonal cycle using an automated comprehensive laboratory animal monitoring system (CLAMS). Exposure to a short-day photoperiod (SD; 8:16-h light-dark cycle) induced a significant decline in body weight, and oxygen consumption (Vo(2)), carbon dioxide production (Vco(2)), and heat production all decreased reaching a nadir by 16 wk of SD. Clear daily rhythms in locomotor activity, Vo(2), and Vco(2) were observed at the start of the study, but these all progressively diminished after prolonged exposure to SD. Rhythms in feeding behavior were also detected initially, reflecting an increase in meal frequency but not duration during the dark phase. This rhythm was lost by 8 wk of SD exposure such that food intake was relatively constant across dark and light phases. After 18 wk in SD, hamsters were transferred to a long-day photoperiod (LD; 16:8-h light-dark cycle), which induced significant weight gain. This was associated with an increase in energy intake within 2 wk, while Vo(2), Vco(2), and heat production all increased back to basal levels. Rhythmicity was reestablished within 4 wk of reexposure to long days. These results demonstrate that photoperiod impacts on body weight via complex changes in locomotor activity, energy expenditure, and feeding behavior, with a striking loss of daily rhythms during SD exposure.
Collapse
Affiliation(s)
- Amy Warner
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Haupt M, Schaefers AT. Effects of postweaning social and physical deprivation on locomotor activity patterns and explorative behavior in female CD-1 mice. Dev Psychobiol 2010; 52:383-93. [DOI: 10.1002/dev.20439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|