1
|
Xie W, Bao Z, Yao D, Yang Y. Overexpression of ZFP69B promotes hepatocellular carcinoma growth by upregulating the expression of TLX1 and TRAPPC9. Cell Div 2024; 19:27. [PMID: 39261946 PMCID: PMC11391796 DOI: 10.1186/s13008-024-00131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND T-cell leukemia homeobox protein 1 (TLX1) has been revealed as a hub transcription factor in leukemia, while its function in hepatocellular carcinoma (HCC) has not been well described. Here, we investigated the regulation and function of TLX1 in HCC. METHODS TLX1 and its possible upstream and downstream molecules in HCC were identified using bioinformatics tools, which were then verified by RT-qPCR assay. CCK-8, wound healing, and Transwell invasion assays were performed to detect the effects of TLX1 knockdown on HCC cells. The interactions between TLX1 and trafficking protein particle complex subunit 9 (TRAPPC9) or Zinc finger protein 69 homolog B (ZFP69B) were further probed by ChIP and luciferase reporter assays. Rescue experiments were finally conducted in vitro and in vivo. RESULTS TLX1 was highly expressed in HCC cells, and the knockdown of TLX1 led to reduced malignant biological behavior of HCC cells. TLX1 bound to the promoter region of TRAPPC9, thereby promoting TRAPPC9 expression. Overexpression of TRAPPC9 attenuated the effect of TLX1 reduction on suppressing malignant behavior of HCC cells. ZFP69B was also highly expressed in HCC cells and bound to the promoter region of TLX1 to induce TLX1 expression. Knockdown of ZFP69B inhibited the viability and mobility of HCC cells in vitro and tumor growth in vivo, and overexpression of TLX1 rescued this inhibition. CONCLUSION These findings suggest that ZFP69B promotes the proliferation of HCC cells by directly upregulating the expression of TLX1 and the ensuing TRAPPC9.
Collapse
Affiliation(s)
- Wei Xie
- Department of General Surgery, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, 212400, P.R. China
| | - Zhongming Bao
- Department of Hepatobiliary Surgery, Huai'an Fifth People's Hospital, Huaiyin, Jiangsu, 223300, P.R. China
| | - Dan Yao
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital (Huai'an Hospital Affiliated to Xuzhou Medical University), Huai'an, Jiangsu, 223001, P.R. China
| | - Yong Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, 221000, P.R. China.
| |
Collapse
|
2
|
Xu P, Al-Anesi MMA, Huang M, Wu S, Ge Y, Chai H, Li P, Hu Q. Copy number variation of metallothionein 1 (MT1) associates with MT1X isoform expression and the overall survival of hepatocellular carcinoma patients in Guangxi. GENE REPORTS 2024; 34:101889. [DOI: 10.1016/j.genrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Yang Y, Bai Y, Wang X, Guo Y, Yu Z, Feng D, Zhang F, Li D, Han P. Clock gene NR1D1 might be a novel target for the treatment of bladder cancer. Urol Oncol 2023; 41:327.e9-327.e18. [PMID: 37208228 DOI: 10.1016/j.urolonc.2023.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE To explore the role of circadian clock gene NR1D1 (REV-erbα) in bladder cancer (BC). METHODS Firstly, the association of NR1D1 level with clinical characteristics and prognosis was investigated among patients diagnosed with BC. Secondly, CCK-8, transwell, and colony formation experiments were performed among BC cells treated with Rev-erbα agonist (SR9009), as well as lentivirus and siRNA, for which NR1D1 were overexpressed (OE) and knocked down (KD), respectively. Thirdly, cell cycle and apoptosis were tested by flowcytometry. PI3K/AKT/mTOR pathway proteins were determined in OE-NR1D1 cells. Finally, OE-NR1D1 and OE-Control BC cells were subcutaneously implanted in BALB/c nude mice. The tumor size and protein levels were compared between groups. A P < 0.05 was considered as statistically significant. RESULTS Patients with NR1D1 positive status had a longer disease-free survival than those with negative expression. The cell viability, migration, and colony formation of BC cells after treated with SR9009 were significantly suppressed. OE-NR1D1 cells had obviously inhibited cell viability, migration, and colony formation, while those were found strengthened in KD-NR1D1 cells. Besides, KD-NR1D1 cells were observed with a lower proportion of dead cells and G0/G1 cells, but a higher ratio of G2/M. The changes of p-AKT, p-S6, p-4EBP1, and FASN involved in PI3K/AKT/mTOR pathway were detected in OE- and KD-NR1D1 BC cells. Finally, in vivo data demonstrated that overexpression of NR1D1 suppressed the tumorigenicity of BC cells. CONCLUSION NR1D1 played a role of tumor suppressor and it might become a novel target for the treatment of BC.
Collapse
Affiliation(s)
- Yubo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoming Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaochuan Guo
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Zhihai Yu
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Xue Z, Wang J, Wang Z, Liu J, Zhao J, Liu X, Zhang Y, Liu G, Zhao Z, Li W, Zhang Q, Li X, Huang B, Wang X. SLC25A32 promotes malignant progression of glioblastoma by activating PI3K-AKT signaling pathway. BMC Cancer 2023; 23:589. [PMID: 37365560 DOI: 10.1186/s12885-023-11097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Solute carrier family 25 member 32 (SLC25A32) is an important member of SLC25A family and plays a role in folate transport metabolism. However, the mechanism and function of SLC25A32 in the progression of human glioblastoma (GBM) remain unclear. METHODS In this study, folate related gene analysis was performed to explore gene expression profiles in low-grade glioma (LGG) and GBM. Western blotting, real-time quantitative PCR (qRT-PCR), and immunohistochemistry (IHC) were used to confirm the expression levels of SLC25A32 in GBM tissues and cell lines. CCK-8 assays, colony formation assays, and Edu assays were performed to assess the role of SLC25A32 on proliferation in GBM in vitro. A 3D sphere invasion assay and an ex vivo co-culture invasion model were performed to assess the effects of SLC25A32 on invasion in GBM. RESULTS Elevated expression of SLC25A32 was observed in GBM, and high SLC25A32 expression was associated with a high glioma grade and poorer prognosis. Immunohistochemistry performed with anti-SLC25A32 on samples from an independent cohort of patients confirmed these results. Knockdown of SLC25A32 inhibited the proliferation and invasion of GBM cells, but overexpression of SLC25A32 significantly promoted cell growth and invasion. These effects were mainly due to the activation of the PI3K-AKT-mTOR signaling pathway. CONCLUSION Our study demonstrated that SLC25A32 plays a significant role in promoting the malignant phenotype of GBM. Therefore, SLC25A32 can be used as an independent prognostic factor in patients with GBM, providing a new target for the comprehensive treatment of GBM.
Collapse
Affiliation(s)
- Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Zide Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Junzhi Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jiangli Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Xuchen Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Guowei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China.
| |
Collapse
|
5
|
Hereditary Tyrosinemia Type 1 Mice under Continuous Nitisinone Treatment Display Remnants of an Uncorrected Liver Disease Phenotype. Genes (Basel) 2023; 14:genes14030693. [PMID: 36980965 PMCID: PMC10047938 DOI: 10.3390/genes14030693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is a genetic disorder of the tyrosine degradation pathway (TIMD) with unmet therapeutic needs. HT1 patients are unable to fully break down the amino acid tyrosine due to a deficient fumarylacetoacetate hydrolase (FAH) enzyme and, therefore, accumulate toxic tyrosine intermediates. If left untreated, they experience hepatic failure with comorbidities involving the renal and neurological system and the development of hepatocellular carcinoma (HCC). Nitisinone (NTBC), a potent inhibitor of the 4-hydroxyphenylpyruvate dioxygenase (HPD) enzyme, rescues HT1 patients from severe illness and death. However, despite its demonstrated benefits, HT1 patients under continuous NTBC therapy are at risk to develop HCC and adverse reactions in the eye, blood and lymphatic system, the mechanism of which is poorly understood. Moreover, NTBC does not restore the enzymatic defects inflicted by the disease nor does it cure HT1. Here, the changes in molecular pathways associated to the development and progression of HT1-driven liver disease that remains uncorrected under NTBC therapy were investigated using whole transcriptome analyses on the livers of Fah- and Hgd-deficient mice under continuous NTBC therapy and after seven days of NTBC therapy discontinuation. Alkaptonuria (AKU) was used as a tyrosine-inherited metabolic disorder reference disease with non-hepatic manifestations. The differentially expressed genes were enriched in toxicological gene classes related to liver disease, liver damage, liver regeneration and liver cancer, in particular HCC. Most importantly, a set of 25 genes related to liver disease and HCC development was identified that was differentially regulated in HT1 vs. AKU mouse livers under NTBC therapy. Some of those were further modulated upon NTBC therapy discontinuation in HT1 but not in AKU livers. Altogether, our data indicate that NTBC therapy does not completely resolves HT1-driven liver disease and supports the sustained risk to develop HCC over time as different HCC markers, including Moxd1, Saa, Mt, Dbp and Cxcl1, were significantly increased under NTBC.
Collapse
|
6
|
Sanford ABA, da Cunha LS, Machado CB, de Pinho Pessoa FMC, Silva ANDS, Ribeiro RM, Moreira FC, de Moraes Filho MO, de Moraes MEA, de Souza LEB, Khayat AS, Moreira-Nunes CA. Circadian Rhythm Dysregulation and Leukemia Development: The Role of Clock Genes as Promising Biomarkers. Int J Mol Sci 2022; 23:ijms23158212. [PMID: 35897788 PMCID: PMC9332415 DOI: 10.3390/ijms23158212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC’s interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.
Collapse
Affiliation(s)
- Ana Beatriz Aguiar Sanford
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
| | - Leidivan Sousa da Cunha
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Abigail Nayara dos Santos Silva
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | | | - Fabiano Cordeiro Moreira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Lucas Eduardo Botelho de Souza
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo 14051-140, SP, Brazil;
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil; (A.B.A.S.); (L.S.d.C.)
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (A.N.d.S.S.); (F.C.M.); (A.S.K.)
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
- Correspondence:
| |
Collapse
|
7
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus’s suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus’s life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
8
|
Barman SK, Zaman MS, Veljanoski F, Malladi CS, Mahns DA, Wu MJ. Expression profiles of the genes associated with zinc homeostasis in normal and cancerous breast and prostate cells. Metallomics 2022; 14:6601457. [PMID: 35657662 DOI: 10.1093/mtomcs/mfac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Zn2+ dyshomeostasis is an intriguing phenomenon in breast and prostate cancers, with breast cancer cells exhibiting higher intracellular Zn2+ level compared to their corresponding normal epithelial cells, in contrast to the low Zn2+ level in prostate cancer cells. In order to gain molecular insights into the zinc homeostasis of breast and prostate cancer cells, this study profiled the expression of 28 genes, including 14 zinc importer genes (SLC39A1-14) which encode ZIP1-14 to transport Zn2+ into the cytoplasm, 10 zinc exporter genes (SLC30A1-10) which encode ZnT1-10 to transport Zn2+ out of the cytoplasm and 4 metallothionein genes (MT1B, MT1F, MT1X, MT2A) in breast (MCF10A, MCF-7, MDA-MB-231) and prostate (RWPE-1, PC3, DU145) cell lines in response to extracellular zinc exposures at a mild cytotoxic dosage and a benign dosage. The RNA samples were prepared at 0 min (T0), 30 min (T30) and 120 min (T120) in a time course with or without zinc exposure, which were used for profiling the baseline and dynamic gene expression. The up-regulation of MT genes was observed across the breast and prostate cancer cell lines. The expression landscape of SLC39A and SLC30A was revealed by the qRT-PCR data of this study, which sheds light on the divergence of intracellular Zn2+ levels for breast and prostate cancer cells. Taken together, the findings are valuable in unravelling the molecular intricacy of zinc homeostasis in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Shital K Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Mohammad S Zaman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Filip Veljanoski
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked
| | - David A Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Ming J Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| |
Collapse
|
9
|
Nie Y, Huang B, Hu AL, Xu YY, Zou Y, Liu Y, Liu J. Antitumor effects of cadmium against diethylnitrosamine-induced liver tumors in mice. Oncol Lett 2021; 23:33. [PMID: 34966449 PMCID: PMC8669683 DOI: 10.3892/ol.2021.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
Cadmium (Cd) has been reported to exhibit antitumor effects against chemically induced liver tumors. However, the antitumor effects of Cd are not completely understood. Metallotherapy, the use of a toxic metal to attack liver tumors, could be a viable strategy. In the present study, 8-week old, male, C57BL/6 mice were administered injections of diethylnitrosamine (DEN) (90 mg/kg, and then 50 mg/kg 2 weeks later), followed by liver tumor promotion with carbon tetrachloride. Cadmium chloride was administered in the drinking water (1000 ppm) from 21–40 weeks after DEN initiation. Body weights were recorded and liver tumor formation was monitored via ultrasound. At the end of experiments, livers were removed, weighed, and the tumor incidence, tumor numbers and tumor size scores were recorded. Liver histology and metallothionein (MT) immunostaining were performed. After DEN injection, animal body weight decreased, and then slowly recovered with time. Cd treatment did not affect animal body weight gain. Ultrasound analysis detected liver tumors 35 weeks after DEN injection, and the mice were necropsied at 40 weeks. Liver/body weight ratios increased in the DEN and DEN + Cd groups. Cd treatment decreased the tumor incidence (71 vs. 17%), tumor numbers (15 vs. 2) and tumor scores (22 vs. 3) when compared with the DEN only group. Histopathology showed hepatocyte degeneration in all groups, and immunohistochemistry showed MT-deficiency in the liver tumors, while MT staining was intensified in the surrounding tissues. Reverse transcription-quantitative PCR showed increases in α-fetoprotein level in DEN-treated livers, and increases in MT-2 and tumor necrosis factor α (TNFα) levels in Cd-treated livers. Thus, it was concluded that Cd is effective in the suppression of DEN-induced liver tumors, and that the mechanisms may be related to MT-deficiency in tumors and the induction of TNFα to kill tumor cells.
Collapse
Affiliation(s)
- Yu Nie
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bo Huang
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - An-Ling Hu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Zou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
10
|
Liu Z, Ma H, Lai Z. Revealing the potential mechanism of Astragalus membranaceus improving prognosis of hepatocellular carcinoma by combining transcriptomics and network pharmacology. BMC Complement Med Ther 2021; 21:263. [PMID: 34663301 PMCID: PMC8522094 DOI: 10.1186/s12906-021-03425-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death. Traditional Chinese medicine (TCM) has special advantages in relieving HCC, while Astragalus membranaceus is commonly used in TCM treatment. However, its underlying mechanisms for treatment of HCC are unclear. Methods Differentially expressed genes (DEGs) of Astragalus membranaceus treatment in HepG2 cells were identified, and Astragalus membranaceus-gene network was constructed. The hub genes were then obtained via protein-protein interaction (PPI) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were subsequently performed. Furthermore, prognosis genes related to HCC from The Cancer Genome Atlas Program (TCGA) was identified to explore the correlation between Astragalus membranaceus treatment and prognosis of HCC. Finally, Astragalus membranaceus-component-target network was established through SymMap. Results Twenty five DEGs (15 up-regulated and 10 down-regulated) of Astragalus membranaceus treatment in HepG2 cells were identified. Among the 25 genes, MT1F, MT1G, MT1X and HMOX1 may play essential roles. Astragalus membranaceus mainly affects the Mineral absorption pathway in HCC. A total of 256 genes (p < 0.01) related to prognosis of HCC were identified, and MT1G is a common gene between prognosis genes and DEGs. Furthermore, Astragalus membranaceus may directly down-regulate MT1G through daidzein to promote ferroptosis of HCC cells and improve prognosis for HCC. Conclusion Our study provided new understandings of the pharmacological mechanisms by which Astragalus membranaceus improves the prognosis of HCC, and showed that the combination of transcriptomics and network pharmacology is helpful to explore mechanisms of TCM and traditional medicines from other nations. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03425-9.
Collapse
Affiliation(s)
- Zhili Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| | - Huihan Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
11
|
Carbone A, De Santis E, Cela O, Giambra V, Miele L, Marrone G, Grieco A, Buschbeck M, Capitanio N, Mazza T, Mazzoccoli G. The Histone Variant MacroH2A1 Impacts Circadian Gene Expression and Cell Phenotype in an In Vitro Model of Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9081057. [PMID: 34440260 PMCID: PMC8391426 DOI: 10.3390/biomedicines9081057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Luca Miele
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Antonio Grieco
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, IJC Building, Can Ruti Campus Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel./Fax: +39-(0882)-410-255
| |
Collapse
|
12
|
Wang Z, Su G, Dai Z, Meng M, Zhang H, Fan F, Liu Z, Zhang L, Weygant N, He F, Fang N, Zhang L, Cheng Q. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif 2021; 54:e12988. [PMID: 33442944 PMCID: PMC7941241 DOI: 10.1111/cpr.12988] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Circadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression. Materials and Methods Samples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single‐cell RNA‐Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony‐forming assay and flow cytometry. Results The cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high‐risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high‐risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase. Conclusions Dysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan‐cancer.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guanhua Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinic Medicine of 5-year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| | - Ning Fang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Kovač U, Skubic C, Bohinc L, Rozman D, Režen T. Oxysterols and Gastrointestinal Cancers Around the Clock. Front Endocrinol (Lausanne) 2019; 10:483. [PMID: 31379749 PMCID: PMC6653998 DOI: 10.3389/fendo.2019.00483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the role of oxidized sterols in three major gastrointestinal cancers (hepatocellular carcinoma, pancreatic, and colon cancer) and how the circadian clock affects the carcinogenesis by regulating the lipid metabolism and beyond. While each field of research (cancer, oxysterols, and circadian clock) is well-studied within their specialty, little is known about the intertwining mechanisms and how these influence the disease etiology in each cancer type. Oxysterols are involved in pathology of these cancers, but final conclusions about their protective or damaging effects are elusive, since the effect depends on the type of oxysterol, concentration, and the cell type. Oxysterol concentrations, the expression of key regulators liver X receptors (LXR), farnesoid X receptor (FXR), and oxysterol-binding proteins (OSBP) family are modulated in tumors and plasma of cancer patients, exposing these proteins and selected oxysterols as new potential biomarkers and drug targets. Evidence about how cholesterol/oxysterol pathways are intertwined with circadian clock is building. Identified key contact points are different forms of retinoic acid receptor related orphan receptors (ROR) and LXRs. RORs and LXRs are both regulated by sterols/oxysterols and the circadian clock and in return also regulate the same pathways, representing a complex interplay between sterol metabolism and the clock. With this in mind, in addition to classical therapies to modulate cholesterol in gastrointestinal cancers, such as the statin therapy, the time is ripe also for therapies where time and duration of the drug application is taken as an important factor for successful therapies. The final goal is the personalized approach with chronotherapy for disease management and treatment in order to increase the positive drug effects.
Collapse
|
14
|
Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats. Neurotox Res 2018; 35:421-431. [PMID: 30328585 DOI: 10.1007/s12640-018-9968-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/08/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
A single injection of LPS produced low-grade neuroinflammation leading to Parkinson's disease (PD) in mice several months later. Whether such a phenomenon occurs in rats and whether such low-grade neuroinflammation would aggravate rotenone (ROT) neurotoxicity and disrupts circadian clock gene/protein expressions were examined in this study. Male rats were given two injections of LPS (2.5-7.5 mg/kg), and neuroinflammation and dopamine neuron loss were evident 3 months later. Seven months after a single LPS (5 mg/kg) injection, rats received low doses of ROT (0.5 mg/kg, sc, 5 times/week for 4 weeks) to examine low-grade neuroinflammation on ROT toxicity. LPS plus ROT produced more pronounced non-motor and motor dysfunctions than LPS or ROT alone in behavioral tests, and decreased mitochondrial complex 1 activity, together with aggravated neuroinflammation and neuron loss. The expressions of clock core genes brain and muscle Arnt-like protein-1 (Bmal1), locomotor output cycles kaput (Clock), and neuronal PAS domain protein-2 (Npas2) were decreased in LPS, ROT, and LPS plus ROT groups. The expressions of circadian feedback genes Periods (Per1 and Per2) were also decreased, but Cryptochromes (Cry1 and Cry2) were unaltered. The circadian clock target genes nuclear receptor Rev-Erbα (Nr1d1), and D-box-binding protein (Dbp) expressions were also decreased. Consistent with the transcript levels, circadian clock protein BMAL1, CLOCK, NR1D1, and DBP were also decreased. Thus, LPS-induced chronic low-grade neuroinflammation potentiated ROT neurotoxicity and disrupted circadian clock gene/protein expression, suggesting a role of disrupted circadian in PD development and progression. Graphical Abstract ᅟ.
Collapse
|
15
|
Sánchez DI, González-Fernández B, Crespo I, San-Miguel B, Álvarez M, González-Gallego J, Tuñón MJ. Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res 2018; 65:e12506. [PMID: 29770483 DOI: 10.1111/jpi.12506] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Disruption of circadian rhythms, which are regulated by the circadian clock machinery, plays an important role in different long-term diseases including hepatocellular carcinoma (HCC). Melatonin has been reported to alleviate promotion and progression of HCC, but the potential contribution of circadian clock modulation is unknown. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight ip) once a week for 8 weeks. Melatonin was given at 5 or 10 mg kg-1 d-1 ip beginning 4 weeks after the onset of DEN administration and ending at the sacrifice time (10, 20, 30, or 40 weeks). Liver expression of Bmal1, Clock, Npas2, Rorα, and Sirt1 increased, whereas Cry1, Per1, Per2, Per3, CK1ε, Rev-erbα, and Rev-erbβ decreased following DEN administration. Melatonin treatment prevented changes in the expression of clock genes, and this effect was accompanied by an upregulation of the MT1 receptor and reduced levels of the hypoxia-inducible factors Hif-1α and Hif-2α. An increased expression of p21, p53, and PARP1/2, a higher Bax/Bcl-2 ratio, and a lower expression of Cyclin D1, CDK6, HSP70, HSP90, and GRP78 proteins were also observed in melatonin-treated mice. Melatonin significantly potentiated the suppression of proliferation and cell cycle arrest induced by the synthetic REV-ERB agonist SR9009 in human Hep3B cells, and BMAL1 knocking down attenuated the pro-apoptotic and antiproliferative effect of melatonin. Results support a contribution of changes in the circadian clock components to the beneficial effects of melatonin in HCC and highlight the usefulness of strategies modulating the circadian machinery in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | | | | | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
16
|
Bailey SM. Emerging role of circadian clock disruption in alcohol-induced liver disease. Am J Physiol Gastrointest Liver Physiol 2018; 315:G364-G373. [PMID: 29848023 PMCID: PMC6732736 DOI: 10.1152/ajpgi.00010.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The detrimental health effects of excessive alcohol consumption are well documented. Alcohol-induced liver disease (ALD) is the leading cause of death from chronic alcohol use. As with many diseases, the etiology of ALD is influenced by how the liver responds to other secondary insults. The molecular circadian clock is an intrinsic cellular timing system that helps organisms adapt and synchronize metabolism to changes in their environment. The clock also influences how tissues respond to toxic, environmental, and metabolic stressors, like alcohol. Consistent with the essential role for clocks in maintaining health, genetic and environmental disruption of the circadian clock contributes to disease. While a large amount of rich literature is available showing that alcohol disrupts circadian-driven behaviors and that circadian clock disruption increases alcohol drinking and preference, very little is known about the role circadian clocks play in alcohol-induced tissue injuries. In this review, recent studies examining the effect alcohol has on the circadian clock in peripheral tissues (liver and intestine) and the impact circadian clock disruption has on development of ALD are presented. This review also highlights some of the rhythmic metabolic processes in the liver that are disrupted by alcohol and potential mechanisms through which alcohol disrupts the liver clock. Improved understanding of the mechanistic links between the circadian clock and alcohol will hopefully lead to the development of new therapeutic approaches for treating ALD and other alcohol-related organ pathologies.
Collapse
Affiliation(s)
- Shannon M. Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
18
|
Polo A, Singh S, Crispo A, Russo M, Giudice A, Montella M, Colonna G, Costantini S. Evaluating the associations between human circadian rhythms and dysregulated genes in liver cancer cells. Oncol Lett 2017; 14:7353-7359. [PMID: 29250165 PMCID: PMC5727601 DOI: 10.3892/ol.2017.7109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Network analysis is a useful approach in cancer biology as it provides information regarding the genes and proteins. In our previous study, a network analysis was performed on dysregulated genes in HepG2 cells, a hepatoblastoma cell line that lacks the viral infection, compared with normal hepatocytes, identifying the presence of 26 HUB genes. The present study aimed to identify whether these previously identified HUB genes participate in the network that controls the human circadian rhythms. The results of the present study demonstrated that 20/26 HUB genes were associated with the metabolic processes that control human circadian rhythms, which supports the hypothesis that a number of cancer types are dependent from circadian cycles. In addition, it was revealed that the CLOCK circadian regulator gene was associated, via cytoskeleton associated protein 5 (CKAP5), with the HUB genes of the HepG2 network, and that CKAP5 was associated with three other circadian genes (casein kinase 1ε, casein kinase 1δ and histone deacetylase 4) and 10 HepG2 genes (SH2 domain containing, ZW10 interacting kinetochore protein, aurora kinase B, cell division cycle 20, centromere protein A, inner centromere protein, mitotic arrest deficient 2 like 1, baculoviral IAP repeat containing 5, SPC24 NDC80 kinetochore complex component and kinesin family member 2C). Furthermore, the genes that associate the circadian system with liver cancer were demonstrated to encode intrinsically disordered proteins. Finally, the results of the present study identified the microRNAs involved in the network formed by the overlapping of HepG2 and circadian genes.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Sakshi Singh
- Doctorate in Computational Biology, Second University of Naples, I-80131 Naples, Italy
| | - Anna Crispo
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Marilina Russo
- Oncology Research Center of Mercogliano, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Aldo Giudice
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Maurizio Montella
- Epidemiology Unit, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| | - Giovanni Colonna
- Medical Informatics Service, University Hospital, University of Campania ‘Luigi Vanvitelli’, I-80131 Naples, Italy
| | - Susan Costantini
- Oncology Research Center of Mercogliano, National Cancer Institute ‘Foundation G. Pascale’, IRCCS, I-80131 Naples, Italy
| |
Collapse
|
19
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Zhuang X, Rambhatla SB, Lai AG, McKeating JA. Interplay between circadian clock and viral infection. J Mol Med (Berl) 2017; 95:1283-1289. [PMID: 28963570 PMCID: PMC5684296 DOI: 10.1007/s00109-017-1592-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
The circadian clock underpins most physiological conditions and provides a temporal dimension to our understanding of body and tissue homeostasis. Disruptions of circadian rhythms have been associated with many diseases, including metabolic disorders and cancer. Recent literature highlights a role for the circadian clock to regulate innate and adaptive immune functions that may prime the host response to infectious organisms. Viruses are obligate parasites that rely on host cell synthesis machinery for their own replication, survival and dissemination. Here, we review key findings on how circadian rhythms impact viral infection and how viruses modulate molecular clocks to facilitate their own replication. This emerging area of viral-clock biology research provides a fertile ground for discovering novel anti-viral targets and optimizing immune-based therapies.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Reinberg AE, Smolensky MH, Riedel M, Riedel C, Brousse E, Touitou Y. Do night and around-the-clock firefighters' shift schedules induce deviation in tau from 24 hours of systolic and diastolic blood pressure circadian rhythms? Chronobiol Int 2017; 34:1158-1174. [PMID: 28920706 DOI: 10.1080/07420528.2017.1343833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Systolic (S) and diastolic (D) blood pressures (BP) [SBP and DBP] are circadian rhythmic with period (τ) in healthy persons assumed to be maintained at 24.0h. We tested this assumption in a sample of 30 healthy career (mean >12 yrs) 30-to-46 yr-old male Caucasian French firefighters (FFs) categorized into three groups according to work schedule and duties: Group A - 12 FFs working 12h day, 12h night, and occasionally 24h shifts and whose primary duties are firefighting plus paramedical and road rescue services; Group B - 9 FFs working mostly 12h day and 12h night shifts and whose duties are answering incoming emergency calls and coordinating service vehicle dispatch from fire stations with Group A personnel; Group C - 9 day shift (09:00-17:00h) FFs charged with administrative tasks. SBP and DBP, both in winter and in summer studies of the same FFs, were sampled by ambulatory BP monitoring every 1h between 06:00-23:00h and every 2h between 23:01-05:59h, respectively, their approximate off-duty wake and sleep spans, for 7 consecutive days. Activity (wrist actigraphy) was also sampled at 1-min intervals. Prominent τ of each variable was derived by a power spectrum program written for unequal-interval time series data, and between-group differences in incidence of τ≠24h of FFs were assessed by chi square test. Circadian rhythm disruption (τ≠24h) of either the SBP or DBP rhythm occurred almost exclusively in night and 24h shift FFs of Group A and B, but almost never in day shift FFs of Group C, and it was not associated with altered τ from 24.0h of the circadian activity rhythm. In summer, occurrence of τ≠24 for FFs of Group A and B differed from that for FFs of Group C in SBP (p=0.042) and DBP (p=0.015); no such differences were found in winter (p>0.10). Overall, manifestation of prominent τ≠24h of SBP or DBP time series was greater in summer than winter, 27.6% versus 16.7%, when workload of Group B FFs, i.e. number of incoming emergency telephone calls, and of Group A FFs, i.e. number of dispatches for provision of emergency services, was, respectively, two and fourfold greater and number of 12h night shifts worked by Group B FFs and number of 24h shifts worked by Group A FFs was, respectively, 92% and 25% greater. FFs of the three groups exhibited no winter-summer difference in τ≠24h of SBP or SDP; however, τ≠24h of DBP in Group B FFs was more frequent in summer than winter (p=0.046). Sleep/wake cycle disruption, sleep deprivation, emotional and physical stress, artificial light-at-night, and altered nutrient timings are hypothesized causes of τ≠24h for BP rhythms of affected Groups A and B FFs, but with unknown future health effects.
Collapse
Affiliation(s)
- Alain E Reinberg
- a Unité de Chronobiologie , Fondation A. de Rothschild , Paris cedex , France
| | - Michael H Smolensky
- b Department of Biomedical Engineering, Cockrell School of Engineering , The University of Texas at Austin , Austin , TX , USA
| | - Marc Riedel
- c EA 2114, psychologie des âges de la vie , Université François Rabelais de Tours , France.,d Service Départemental d' Incendie et de Secours des Bouches du Rhône (SDIS 13) , France.,e Psychologie des âges de la vie , Université François Rabelais de Tours , EA , France
| | - Cedric Riedel
- f Faculté de Médecine , Université de Montpellier , France
| | - Eric Brousse
- c EA 2114, psychologie des âges de la vie , Université François Rabelais de Tours , France
| | - Yvan Touitou
- a Unité de Chronobiologie , Fondation A. de Rothschild , Paris cedex , France
| |
Collapse
|
22
|
Li WK, Li H, Lu YF, Li YY, Fu ZD, Liu J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ 2017; 5:e3348. [PMID: 28533986 PMCID: PMC5438592 DOI: 10.7717/peerj.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023] Open
Abstract
Aim Atorvastatin is a HMG-CoA reductase inhibitor used for hyperlipidemia. Atorvastatin is generally safe but may induce cholestasis. The present study aimed to examine the effects of atorvastatin on hepatic gene expression related to bile acid metabolism and homeostasis, as well as the expression of circadian clock genes in livers of mice. Methods Adult male mice were given atorvastatin (10, 30, and 100 mg/kg, po) daily for 30 days, and blood biochemistry, histopathology, and gene expression were examined. Results Repeated administration of atorvastatin did not affect animal body weight gain or liver weights. Serum enzyme activities were in the normal range. Histologically, the high dose of atorvastatin produced scattered swollen hepatocytes, foci of feathery-like degeneration, together with increased expression of Egr-1 and metallothionein-1. Atorvastatin increased the expression of Cyp7a1 in the liver, along with FXR and SHP. In contract, atorvastatin decreased the expression of bile acid transporters Ntcp, Bsep, Ostα, and Ostβ. The most dramatic change was the 30-fold induction of Cyp7a1. Because Cyp7a1 is a circadian clock-controlled gene, we further examined the effect of atorvastatin on clock gene expression. Atorvastatin increased the expression of clock core master genes Bmal1 and Npas2, decreased the expression of clock feedback genes Per2, Per3, and the clock targeted genes Dbp and Tef, whereas it had no effect on Cry1 and Nr1d1 expression. Conclusion Repeated administration of atorvastatin affects bile acid metabolism and markedly increases the expression of the bile acid synthesis rate-limiting enzyme gene Cyp7a1, together with alterations in the expression of circadian clock genes.
Collapse
Affiliation(s)
- Wen-Kai Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China.,Department of Pharmacology, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Huan Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Ying-Ying Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| |
Collapse
|