1
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Motiei M, Abu-Dawud R, Relógio A, Assaf C. Circadian rhythms in haematological malignancies: therapeutic potential and personalised interventions. EBioMedicine 2024; 110:105451. [PMID: 39566400 PMCID: PMC11617894 DOI: 10.1016/j.ebiom.2024.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The circadian clock, a fundamental cellular mechanism, regulates the rhythmic expression of numerous genes and biological processes across various organs. Disruptions in this system, driven by genetic or environmental factors, have been reported to be involved in cancer progression. This review explores the role of the circadian clock in cancer hallmarks and its impact on cellular homeostasis within haematological malignancies. Drawing on findings from in vitro, in vivo, and clinical trials, this review highlights the potential of clock genes as diagnostic and prognostic biomarkers, and as therapeutic targets for optimising treatment timing. It discusses how circadian rhythms can enhance treatment efficacy through both pharmacological and non-pharmacological interventions, outlining strategies for optimising dosing schedules and implementing personalised chronobiological interventions, with a particular focus on haematological malignancies, including cutaneous lymphoma. Ongoing research holds promise for advancing personalised therapeutic approaches and ultimately improving cancer care standards.
Collapse
Affiliation(s)
- Marjan Motiei
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Raed Abu-Dawud
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine, and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Chalid Assaf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Department of Dermatology, HELIOS Klinikum Krefeld, Krefeld 47805, Germany.
| |
Collapse
|
3
|
Niu Z, Yang Z, Sun S, Zeng Z, Han Q, Wu L, Bai J, Li H, Xia H. Clinical analysis of the efficacy of radiation therapy for primary high-grade gliomas guided by biological rhythms. Transl Oncol 2024; 45:101973. [PMID: 38705052 PMCID: PMC11089398 DOI: 10.1016/j.tranon.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVE High-grade glioma (HGG) patients frequently encounter treatment resistance and relapse, despite numerous interventions seeking enhanced survival outcomes yielding limited success. Consequently, this study, rooted in our prior research, aimed to ascertain whether leveraging circadian rhythm phase attributes could optimize radiotherapy results. METHODS In this retrospective analysis, we meticulously selected 121 HGG cases with synchronized rhythms through Cosinor analysis. Post-surgery, all subjects underwent standard radiotherapy alongside Temozolomide chemotherapy. Random allocation ensued, dividing patients into morning (N = 69) and afternoon (N = 52) radiotherapy cohorts, enabling a comparison of survival and toxicity disparities. RESULTS The afternoon radiotherapy group exhibited improved overall survival (OS) and progression-free survival (PFS) relative to the morning cohort. Notably, median OS extended to 25.6 months versus 18.5 months, with P = 0.014, with median PFS at 20.6 months versus 13.3 months, with P = 0.022, post-standardized radiotherapy. Additionally, lymphocyte expression levels in the afternoon radiation group 32.90(26.10, 39.10) significantly exceeded those in the morning group 31.30(26.50, 39.20), with P = 0.032. CONCLUSIONS This study underscores the markedly prolonged average survival within the afternoon radiotherapy group. Moreover, lymphocyte proportion demonstrated a notable elevation in the afternoon group. Timely and strategic adjustments of therapeutic interventions show the potential to improve therapeutic efficacy, while maintaining vigilant systemic immune surveillance. A comprehensive grasp of physiological rhythms governing both the human body and tumor microenvironment can refine treatment efficacy, concurrently curtailing immune-related damage-a crucial facet of precision medicine.
Collapse
Affiliation(s)
- Zhanfeng Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Shengyu Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Zhong Zeng
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Qian Han
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China
| | - Liang Wu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Jinbo Bai
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Hailiang Li
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, PR China; Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| |
Collapse
|
4
|
Chen K, Wang Y, Li D, Wu R, Wang J, Wei W, Zhu W, Xie W, Feng D, He Y. Biological clock regulation by the PER gene family: a new perspective on tumor development. Front Cell Dev Biol 2024; 12:1332506. [PMID: 38813085 PMCID: PMC11133573 DOI: 10.3389/fcell.2024.1332506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
The Period (PER) gene family is one of the core components of the circadian clock, with substantial correlations between the PER genes and cancers identified in extensive researches. Abnormal mutations in PER genes can influence cell function, metabolic activity, immunity, and therapy responses, thereby promoting the initiation and development of cancers. This ultimately results in unequal cancers progression and prognosis in patients. This leads to variable cancer progression and prognosis among patients. In-depth studies on the interactions between the PER genes and cancers can reveal novel strategies for cancer detection and treatment. In this review, we aim to provide a comprehensive overview of the latest research on the role of the PER gene family in cancer.
Collapse
Affiliation(s)
- Kai Chen
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Wang
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Wenhua Xie
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jia Xing, China
| |
Collapse
|
5
|
Abstract
The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB. Our discussion includes efflux transporters and the molecular timing mechanisms that regulate their activities. A significant focus of this review is the potential implications of chronotherapy, leveraging our knowledge of circadian rhythms for improving drug delivery to the brain. Understanding the temporal changes in BBB can lead to optimized timing of drug administration, to enhance therapeutic efficacy for neurological disorders while reducing side effects. By elucidating the interplay between circadian rhythms and drug transport across the BBB, this review offers insights into innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mari Kim
- Cell Biology Department, Emory University, Atlanta, GA, USA (M.K., S.L.Z.)
| | - Richard F Keep
- Neurosurgery, University of Michigan, Ann Arbor, MI, USA (R.F.K.)
| | - Shirley L Zhang
- Cell Biology Department, Emory University, Atlanta, GA, USA (M.K., S.L.Z.)
| |
Collapse
|
6
|
Nelson N, Relógio A. Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 2024; 8:40. [PMID: 38378853 PMCID: PMC10879494 DOI: 10.1038/s41698-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is one of the most lethal cancers with current therapeutic options lacking major successes. This underlines the necessity to understand glioblastoma biology on other levels and use these learnings for the development of new therapeutic concepts. Mounting evidence in the field of circadian medicine points to a tight interplay between disturbances of the circadian system and glioblastoma progression. The circadian clock, an internal biological mechanism governing numerous physiological processes across a 24-h cycle, also plays a pivotal role in regulationg key cellular functions, including DNA repair, cell cycle progression, and apoptosis. These processes are integral to tumour development and response to therapy. Disruptions in circadian rhythms can influence tumour growth, invasion, and response to treatment in glioblastoma patients. In this review, we explore the robust association between the circadian clock, and cancer hallmarks within the context of glioblastoma. We further discuss the impact of the circadian clock on eight cancer hallmarks shown previously to link the molecular clock to different cancers, and summarize the putative role of clock proteins in circadian rhythm disturbances and chronotherapy in glioblastoma. By unravelling the molecular mechanisms behind the intricate connections between the circadian clock and glioblastoma progression, researchers can pave the way for the identification of potential therapeutic targets, the development of innovative treatment strategies and personalized medicine approaches. In conclusion, this review underscores the significant influence of the circadian clock on the advancement and understanding of future therapies in glioblastoma, ultimately leading to enhanced outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Haematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
7
|
Nettnin EA, Nguyen T, Arana S, Barros Guinle MI, Garcia CA, Gibson EM, Prolo LM. Review: therapeutic approaches for circadian modulation of the glioma microenvironment. Front Oncol 2023; 13:1295030. [PMID: 38173841 PMCID: PMC10762863 DOI: 10.3389/fonc.2023.1295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
High-grade gliomas are malignant brain tumors that are characteristically hard to treat because of their nature; they grow quickly and invasively through the brain tissue and develop chemoradiation resistance in adults. There is also a distinct lack of targeted treatment options in the pediatric population for this tumor type to date. Several approaches to overcome therapeutic resistance have been explored, including targeted therapy to growth pathways (ie. EGFR and VEGF inhibitors), epigenetic modulators, and immunotherapies such as Chimeric Antigen Receptor T-cell and vaccine therapies. One new promising approach relies on the timing of chemotherapy administration based on intrinsic circadian rhythms. Recent work in glioblastoma has demonstrated temporal variations in chemosensitivity and, thus, improved survival based on treatment time of day. This may be due to intrinsic rhythms of the glioma cells, permeability of the blood brain barrier to chemotherapy agents, the tumor immune microenvironment, or another unknown mechanism. We review the literature to discuss chronotherapeutic approaches to high-grade glioma treatment, circadian regulation of the immune system and tumor microenvironment in gliomas. We further discuss how these two areas may be combined to temporally regulate and/or improve the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Ella A. Nettnin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Thien Nguyen
- Division of Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Sophia Arana
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Cesar A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Laura M. Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| |
Collapse
|
8
|
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.
Collapse
Affiliation(s)
- Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy N Rich
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Kisamore CO, Elliott BD, DeVries AC, Nelson RJ, Walker WH. Chronotherapeutics for Solid Tumors. Pharmaceutics 2023; 15:2023. [PMID: 37631237 PMCID: PMC10459260 DOI: 10.3390/pharmaceutics15082023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Circadian rhythms are internal manifestations of the 24-h solar day that allow for synchronization of biological and behavioral processes to the external solar day. This precise regulation of physiology and behavior improves adaptive function and survival. Chronotherapy takes advantage of circadian rhythms in physiological processes to optimize the timing of drug administration to achieve maximal therapeutic efficacy and minimize negative side effects. Chronotherapy for cancer treatment was first demonstrated to be beneficial more than five decades ago and has favorable effects across diverse cancer types. However, implementation of chronotherapy in clinic remains limited. The present review examines the evidence for chronotherapeutic treatment for solid tumors. Specifically, studies examining chrono-chemotherapy, chrono-radiotherapy, and alternative chronotherapeutics (e.g., hormone therapy, TKIs, antiangiogenic therapy, immunotherapy) are discussed. In addition, we propose areas of needed research and identify challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
| | - Brittany D. Elliott
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Petković M, Henis M, Heese O, Relógio A. Chronotherapy in Glioblastoma: state of the art and future perspectives. EBioMedicine 2023; 89:104470. [PMID: 36796229 PMCID: PMC9958380 DOI: 10.1016/j.ebiom.2023.104470] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Circadian rhythms regulate various processes in the human body, including drug metabolism. Chronotherapy optimizes treatment timing based on the circadian rhythm of the individual patient, such that the treatment efficacy is maximized, and adverse effects are minimized. It has been explored in different cancers with varying conclusions. Glioblastoma multiforme (GBM) is the most aggressive type of brain tumour with a very dismal prognosis. In recent years, there has been very little success in designing successful therapies to fight this disease. Chronotherapy offers the opportunity to leverage existing treatments to extend patient survival and to increase their quality of life. Here, we discuss recent advances in using chronotherapy regimens in the treatment of GMB, such as radiotherapy, temozolomide (TMZ) and bortezomib, as well as discuss novel treatments with drugs of short half-life or circadian phase specific activity, and examine the therapeutic potential of new approaches that target elements of the core circadian clock.
Collapse
Affiliation(s)
- Marina Petković
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Melad Henis
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Oliver Heese
- Department of Neurosurgery and Spinal Surgery, HELIOS Medical Center Schwerin, University Campus of MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany; Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Medical Department of Hematology, Oncology, and Tumour Immunology, Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany.
| |
Collapse
|
11
|
Ali YF, Hong Z, Liu NA, Zhou G. Clock in radiation oncology clinics: cost-free modality to alleviate treatment-related toxicity. Cancer Biol Ther 2022; 23:201-210. [PMID: 35263235 PMCID: PMC8920191 DOI: 10.1080/15384047.2022.2041953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A large number of studies have reported that tumor cells are often out of sync with the surrounding healthy tissue. Exploiting this misalignment may be a way to obtain a substantial gain in the therapeutic window. Specifically, based on reports to date, we will assess whether radiotherapy outcomes differ depending on the administration time. Collectively, 24 studies met the inclusion criteria, out of which 12 at least reported that radiation therapy is less toxic when administered at a particular time, probably because there is less collateral damage to healthy cells. However, discrepancies exist across studies and urge further investigation. Mechanistic studies elucidating the relationship between radiotherapy, circadian rhythms, and cell cycle, combined with either our “digital” or “biological” chronodata, would help oncologists successfully chronotype individual patients and strategize treatment plans accordingly.
Collapse
Affiliation(s)
- Yasser F Ali
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China.,Biophysics Lab, Physics Department, Faculty of Science Al-Azhar University Nasr City, 11884, Cairo, Egypt
| | - Zhiqiang Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | - Ning-Ang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Amiama-Roig A, Verdugo-Sivianes EM, Carnero A, Blanco JR. Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy. Cancers (Basel) 2022; 14:5071. [PMID: 36291855 PMCID: PMC9599830 DOI: 10.3390/cancers14205071] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 08/19/2023] Open
Abstract
Living organisms present rhythmic fluctuations every 24 h in their behavior and metabolism to anticipate changes in the environment. These fluctuations are controlled by a very complex molecular mechanism, the circadian clock, that regulates the expression of multiple genes to ensure the right functioning of the body. An individual's circadian system is altered during aging, and this is related to numerous age-associated pathologies and other alterations that could contribute to the development of cancer. Nowadays, there is an increasing interest in understanding how circadian rhythms could be used in the treatment of cancer. Chronotherapy aims to understand the impact that biological rhythms have on the response to a therapy to optimize its action, maximize health benefits and minimize possible adverse effects. Clinical trials so far have confirmed that optimal timing of treatment with chemo or immunotherapies could decrease drug toxicity and increase efficacy. Instead, chronoradiotherapy seems to minimize treatment-related symptoms rather than tumor progression or patient survival. In addition, potential therapeutic targets within the molecular clock have also been identified. Therefore, results of the application of chronotherapy in cancer therapy until now are challenging, feasible, and could be applied to clinical practice to improve cancer treatment without additional costs. However, different limitations and variables such as age, sex, or chronotypes, among others, should be overcome before chronotherapy can really be put into clinical practice.
Collapse
Grants
- RTI2018-097455-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- RED2018-102723-T Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- CB16/12/00275 Centro de Investigación Biomédica en Red de Cáncer
- PI-0397-2017 Consejería de Salud y Familias
- P18-RT-2501 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
- No. CTEICU/PAIDI 2020 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
13
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
14
|
Marcu LG. Developments on tumour site-specific chrono-oncology towards personalised treatment. Crit Rev Oncol Hematol 2022; 179:103803. [PMID: 36058443 DOI: 10.1016/j.critrevonc.2022.103803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Research into chronotherapy has seen notable developments over the past decades, with a clear focus on the identification of circadian clock genes as potential treatment targets. Moreover, new factors are investigated, such as gender and the role of cancer stem cells in influencing the outcome of chronomodulated treatments. These factors could add to the arsenal of parameters that assist with patient stratification and treatment personalisation. Literature analysis showed that certain anatomical sites received more attention and the associated studies reported clinically significant results, even though some findings are contradictory. The aim of this work was to review the existing studies on chrono-oncology using a tumour site-specific approach and to highlight the status of research in various cancers. Inconsistencies in data reporting, the nature of the studies and the highly heterogeneous patient characteristics, highlight the need for well-designed randomised controlled trials to elucidate the real potential of chronotherapy in oncology.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, Oradea 410087, Romania; School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
15
|
Frosina G. Radiotherapy of High-Grade Gliomas: First Half of 2021 Update with Special Reference to Radiosensitization Studies. Int J Mol Sci 2021; 22:8942. [PMID: 34445646 PMCID: PMC8396323 DOI: 10.3390/ijms22168942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Albeit the effort to develop targeted therapies for patients with high-grade gliomas (WHO grades III and IV) is evidenced by hundreds of current clinical trials, radiation remains one of the few effective therapeutic options for them. This review article analyzes the updates on the topic "radiotherapy of high-grade gliomas" during the period 1 January 2021-30 June 2021. The high number of articles retrieved in PubMed using the search terms ("gliom* and radio*") and manually selected for relevance indicates the feverish research currently ongoing on the subject. During the last semester, significant advances were provided in both the preclinical and clinical settings concerning the diagnosis and prognosis of high-grade gliomas, their radioresistance, and the inevitable side effects of their treatment with radiation. The novel information concerning tumor radiosensitization was of special interest in terms of therapeutic perspective and was discussed in detail.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
16
|
Bermúdez-Guzmán L, Blanco-Saborío A, Ramírez-Zamora J, Lovo E. The Time for Chronotherapy in Radiation Oncology. Front Oncol 2021; 11:687672. [PMID: 34046365 PMCID: PMC8144648 DOI: 10.3389/fonc.2021.687672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Five decades ago, Franz Halberg conceived the idea of a circadian-based therapy for cancer, given the differential tolerance to treatment derived from the intrinsic host rhythms. Nowadays, different experimental models have demonstrated that both the toxicity and efficacy of several anticancer drugs vary by more than 50% as a function of dosing time. Accordingly, it has been shown that chemotherapeutic regimens optimally timed with the circadian cycle have jointly improved patient outcomes both at the preclinical and clinical levels. Along with chemotherapy, radiation therapy is widely used for cancer treatment, but its effectiveness relies mainly on its ability to damage DNA. Notably, the DNA damage response including DNA repair, DNA damage checkpoints, and apoptosis is gated by the circadian clock. Thus, the therapeutic potential of circadian-based radiotherapy against cancer is mainly dependent upon the control that the molecular clock exerts on DNA repair enzymes across the cell cycle. Unfortunately, the time of treatment administration is not usually considered in clinical practice as it varies along the daytime working hours. Currently, only a few studies have evaluated whether the timing of radiotherapy affects the treatment outcome. Several of these studies show that it is possible to reduce the toxicity of the treatment if it is applied at a specific time range, although with some inconsistencies. In this Perspective, we review the main advances in the field of chronoradiotherapy, the possible causes of the inconsistencies observed in the studies so far and provide some recommendations for future trials.
Collapse
Affiliation(s)
| | | | | | - Eduardo Lovo
- International Cancer Center, Diagnostic Hospital, San Salvador, El Salvador
| |
Collapse
|