1
|
Lee Y, Lee L, Zhang L, Zhou Q. Association between fatty acid intake and age-related macular degeneration: a meta-analysis. Front Nutr 2024; 11:1403987. [PMID: 38988860 PMCID: PMC11234253 DOI: 10.3389/fnut.2024.1403987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Objective The association of age-related macular degeneration (AMD) with the intake of high and low fatty acids (FAs), respectively, remains controversial. To this end, we performed a comprehensive meta-analysis of all the existing studies on the association of various intake levels of FA subtypes with AMD to determine these associations. Methods A systematic search of PubMed, Web of Science, Cochrane Library, and EMBASE databases was conducted from inception to September 2023. To compare the highest and lowest groups, odds ratio (OR) with 95% confidence intervals (CIs) was analyzed with a random-effects model/fixed-effects model. Results A high intake of omega-3 LCPUFAs (OR:0.67; 95%CI:[0.51, 0.88]; p = 0.004), DHA (OR:0.80; 95%CI:[0.70, 0.90]; p < 0.001), EPA (OR:0.91; 95%CI:[0.86, 0.97]; p = 0.004), and simultaneous intake of DHA and EPA (OR:0.79; 95%CI:[0.67, 0.93]; p = 0.035) significantly reduced the risk of overall AMD. Conversely, a high intake of trans-FAs (OR: 2.05; 95%CI: [1.29, 3.25]; p = 0.002) was significantly related to an increased risk of advanced AMD compared to the low-intake group. The subgroup analysis results are shown in the articles. Conclusion Increasing dietary intake of omega-3 LCPUFAs, specifically DHA, and EPA, or the simultaneous intake of DHA and EPA, is significantly associated with a reduced risk of overall AMD. Various subtypes of omega-3 also have a significant association with a reduced risk of different stages of AMD. The high intake of trans-fatty acids (TFAs) is significantly and positively correlated with the risk of advanced AMD. This could further support the idea that consuming foods rich in omega-3 LCPUFAs and reducing consumption of foods rich in TFAs may prevent AMD. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023467227.
Collapse
Affiliation(s)
- Yan Lee
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- International School of Jinan University, Guangzhou, China
| | - Lok Lee
- School of Journalism and Communication, Jinan University, Guangzhou, China
| | - Li Zhang
- International School of Jinan University, Guangzhou, China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
4
|
Roohi TF, Faizan S, Parray ZA, Baig MDAI, Mehdi S, Kinattingal N, Krishna KL. Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders. High Blood Press Cardiovasc Prev 2023; 30:513-531. [PMID: 38041772 DOI: 10.1007/s40292-023-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Diabetes mellitus, a prevalent global health concern, is characterized by hyperglycemia. However, recent research reveals a more intricate landscape where oxidative stress and endoplasmic reticulum (ER) stress orchestrate a dual assault, profoundly impacting diabetic disorders. This review elucidates the interplay between these two stress pathways and their collective consequences on diabetes. Oxidative stress emanates from mitochondria, where reactive oxygen species (ROS) production spirals out of control, leading to cellular damage. We explore ROS-mediated signaling pathways, which trigger β-cell dysfunction, insulin resistance, and endothelial dysfunction the quintessential features of diabetes. Simultaneously, ER stress unravels, unveiling how protein folding disturbances activate the unfolded protein response (UPR). We dissect the UPR's dual role, oscillating between cellular adaptation and apoptosis, significantly influencing pancreatic β-cells and peripheral insulin-sensitive tissues. Crucially, this review exposes the synergy between oxidative and ER stress pathways. ROS-induced UPR activation and ER stress-induced oxidative stress create a detrimental feedback loop, exacerbating diabetic complications. Moreover, we spotlight promising therapeutic strategies that target both stress pathways. Antioxidants, molecular chaperones, and novel pharmacological agents offer potential avenues for diabetes management. As the global diabetes burden escalates, comprehending the dual assault of oxidative and ER stress is paramount. This review not only unveils the intricate molecular mechanisms governing diabetic pathophysiology but also advocates a holistic therapeutic approach. By addressing both stress pathways concurrently, we may forge innovative solutions for diabetic disorders, ultimately alleviating the burden of this pervasive health issue.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Zahoor Ahmad Parray
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi, 110016, India
| | - M D Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India.
| |
Collapse
|
5
|
Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev 2023; 198:114870. [PMID: 37172783 DOI: 10.1016/j.addr.2023.114870] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Effective drug therapy for vitreoretinal disease is a major challenge in the field of ophthalmology; various protective systems, including anatomical and physiological barriers, complicate drug delivery to precise targets. However, as the eye is a closed cavity, it is an ideal target for local administration. Various types of drug delivery systems have been investigated that take advantage of this aspect of the eye, enhancing ocular permeability and optimizing local drug concentrations. Many drugs, mainly anti-VEGF drugs, have been evaluated in clinical trials and have provided clinical benefit to many patients. In the near future, innovative drug delivery systems will be developed to avoid frequent intravitreal administration of drugs and maintain effective drug concentrations for a long period of time. Here, we review the published literature on various drugs and administration routes and current clinical applications. Recent advances in drug delivery systems are discussed along with future prospects.
Collapse
Affiliation(s)
- Noriyasu Hashida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Guymer RH, Campbell TG. Age-related macular degeneration. Lancet 2023; 401:1459-1472. [PMID: 36996856 DOI: 10.1016/s0140-6736(22)02609-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 04/01/2023]
Abstract
Age-related macular degeneration is an increasingly important public health issue due to ageing populations and increased longevity. Age-related macular degeneration affects individuals older than 55 years and threatens high-acuity central vision required for important tasks such as reading, driving, and recognising faces. Advances in retinal imaging have identified biomarkers of progression to late age-related macular degeneration. New treatments for neovascular age-related macular degeneration offer potentially longer-lasting effects, and progress is being made towards a treatment for atrophic late age-related macular degeneration. An effective intervention to slow progression in the earlier stages of disease, or to prevent late age-related macular degeneration development remains elusive, and our understanding of underlying mechanistic pathways continues to evolve.
Collapse
Affiliation(s)
- Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia; Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia
| | - Thomas G Campbell
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia; Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, VIC, Australia; Department of Ophthalmology, Sunshine Coast University Hospital, Sunshine Coast, QLD, Australia.
| |
Collapse
|
7
|
Grani F, Soto-Sánchez C, Fimia A, Fernández E. Toward a personalized closed-loop stimulation of the visual cortex: Advances and challenges. Front Cell Neurosci 2022; 16:1034270. [PMID: 36582211 PMCID: PMC9792612 DOI: 10.3389/fncel.2022.1034270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Current cortical visual prosthesis approaches are primarily unidirectional and do not consider the feed-back circuits that exist in just about every part of the nervous system. Herein, we provide a brief overview of some recent developments for better controlling brain stimulation and present preliminary human data indicating that closed-loop strategies could considerably enhance the effectiveness, safety, and long-term stability of visual cortex stimulation. We propose that the development of improved closed-loop strategies may help to enhance our capacity to communicate with the brain.
Collapse
Affiliation(s)
- Fabrizio Grani
- Institute of Bioengineering, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Cristina Soto-Sánchez
- Institute of Bioengineering, Universidad Miguel Hernández de Elche, Elche, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Antonio Fimia
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández de Elche, Elche, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain,*Correspondence: Eduardo Fernández,
| |
Collapse
|
8
|
Ahmad I. CRISPR/Cas9-A Promising Therapeutic Tool to Cure Blindness: Current Scenario and Future Prospects. Int J Mol Sci 2022; 23:11482. [PMID: 36232782 PMCID: PMC9569777 DOI: 10.3390/ijms231911482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR-based targeted genome editing is bringing revolutionary changes in the research arena of biological sciences. CRISPR/Cas9 has been explored as an efficient therapeutic tool for the treatment of genetic diseases. It has been widely used in ophthalmology research by using mouse models to correct pathogenic mutations in the eye stem cells. In recent studies, CRISPR/Cas9 has been used to correct a large number of mutations related to inherited retinal disorders. In vivo therapeutic advantages for retinal diseases have been successfully achieved in some rodents. Current advances in the CRISPR-based gene-editing domain, such as modified Cas variants and delivery approaches have optimized its application to treat blindness. In this review, recent progress and challenges of the CRISPR-Cas system have been discussed to cure blindness and its prospects.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; ; Tel.: +966-13-8608393
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|