1
|
Yang J, Hu X, Wang Y, Liu W, Zhang M, Zhang A, Ni B. Identification of the shared gene signatures and molecular mechanisms between multiple sclerosis and non-small cell lung cancer. Front Immunol 2023; 14:1180449. [PMID: 37251402 PMCID: PMC10213509 DOI: 10.3389/fimmu.2023.1180449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The association between multiple sclerosis (MS) and non-small cell lung cancer (NSCLC) has been the subject of investigation in clinical cohorts, yet the molecular mechanisms underpinning this relationship remain incompletely understood. To address this, our study aimed to identify shared genetic signatures, shared local immune microenvironment, and molecular mechanisms between MS and NSCLC. Methods We selected multiple Gene Expression Omnibus (GEO) datasets, including GSE19188, GSE214334, GSE199460, and GSE148071, to obtain gene expression levels and clinical information from patients or mice with MS and NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate co-expression networks linked to MS and NSCLC and used single-cell RNA sequencing (scRNA-seq) analysis to explore the local immune microenvironment of MS and NSCLC and identify possible shared components. Results Our analysis identified the most significant shared gene in MS and NSCLC, phosphodiesterase 4A (PDE4A), and we analyzed its expression in NSCLC patients and its impact on patient prognosis, as well as its molecular mechanism. Our results demonstrated that high expression of PDE4A was associated with poor prognoses in NSCLC patients, and Gene Set Enrichment Analysis (GSEA) revealed that PDE4A is involved in immune-related pathways and has a significant regulatory effect on human immune responses. We further observed that PDE4A was closely linked to the sensitivity of several chemotherapy drugs. Conclusion Given the limitation of studies investigating the molecular mechanisms underlying the correlation between MS and NSCLC, our findings suggest that there are shared pathogenic processes and molecular mechanisms between these two diseases and that PDE4A represents a potential therapeutic target and immune-related biomarker for patients with both MS and NSCLC.
Collapse
Affiliation(s)
- Jingyun Yang
- Department of Oncology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wang
- Medical Research Institute, Southwest University, Chongqing, China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
3
|
Kerkhof P, Gruijl F. Phototherapy in the perspective of the chronicity of psoriasis. J Eur Acad Dermatol Venereol 2020; 34:926-931. [DOI: 10.1111/jdv.16245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- P.C.M. Kerkhof
- Department of Dermatology Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - F.R. Gruijl
- Department of Dermatology Leids Universitair Medisch Centrum Nijmegen The Netherlands
| |
Collapse
|
4
|
Krämer TJ, Hack N, Brühl TJ, Menzel L, Hummel R, Griemert EV, Klein M, Thal SC, Bopp T, Schäfer MKE. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-γ gene expression in acute experimental traumatic brain injury. J Neuroinflammation 2019; 16:163. [PMID: 31383034 PMCID: PMC6683516 DOI: 10.1186/s12974-019-1550-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability. T cells were shown to infiltrate the brain during the first days after injury and to exacerbate tissue damage. The objective of this study was to investigate the hitherto unresolved role of immunosuppressive, regulatory T cells (Tregs) in experimental TBI. Methods “Depletion of regulatory T cell” (DEREG) and wild type (WT) C57Bl/6 mice, treated with diphtheria toxin (DTx) to deplete Tregs or to serve as control, were subjected to the controlled cortical impact (CCI) model of TBI. Neurological and motor deficits were examined until 5 days post-injury (dpi). At the 5 dpi endpoint, (immuno-) histological, protein, and gene expression analyses were carried out to evaluate the consequences of Tregs depletion. Comparison of parametric or non-parametric data between two groups was done using Student’s t test or the Mann-Whitney U test. For multiple comparisons, p values were calculated by one-way or two-way ANOVA followed by specific post hoc tests. Results The overall neurological outcome at 5 dpi was not different between DEREG and WT mice but more severe motor deficits occurred transiently at 1 dpi in DEREG mice. DEREG and WT mice did not differ in the extent of brain damage, blood-brain barrier (BBB) disruption, or neuronal excitotoxicity, as examined by lesion volumetry, immunoglobulin G (IgG) extravasation, or calpain-generated αII-spectrin breakdown products (SBDPs), respectively. In contrast, increased protein levels of glial fibrillary acidic protein (GFAP) and GFAP+ astrocytes in the ipsilesional brain tissue indicated exaggerated reactive astrogliosis in DEREG mice. T cell counts following anti-CD3 immunohistochemistry and gene expression analyses of Cd247 (CD3 subunit zeta) and Cd8a (CD8a) further indicated an increased number of T cells infiltrating the brain injury sites of DEREG mice compared to WT. These changes coincided with increased gene expression of pro-inflammatory interferon-γ (Ifng) in DEREG mice compared to WT in the injured brain. Conclusions The results show that the depletion of Tregs attenuates T cell brain infiltration, reactive astrogliosis, interferon-γ gene expression, and transiently motor deficits in murine acute traumatic brain injury.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Nathalia Hack
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Till J Brühl
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1 (Bld. 505), 55131, Mainz, Germany. .,Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis 2014; 33:1467-75. [PMID: 24715155 DOI: 10.1007/s10096-014-2098-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/20/2014] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that presents a protean spectrum of clinical manifestations, and may affect any organ. The typical course of SLE is insidious, slow, and progressive, with potential exacerbations and remissions, and even dramatically acute and rapidly fatal outcomes. Recently, infections have been shown to be highly associated with the onset and/or exacerbations of SLE, and their possible causative and/or protective role has been largely emphasized in the medical literature. However, the etiopathogenesis of SLE is still obscure and far from being completely elucidated. Among infections, particularly Epstein-Barr virus (EBV), parvovirus B19, retrovirus, and cytomegalovirus (CMV) infections might play a pivotal pathogenetic role. The multifaceted interactions between infections and autoimmunity reveal many possibilities for either causative or protective associations. Indeed, some infections, primarily protozoan infections, might confer protection from autoimmune processes, depending on the unique interaction between the microorganism and host. Further studies are needed in order to demonstrate that infectious agents might, indeed, be causative of SLE, and to address the potential clinical sequelae of infections in the field of autoimmunity.
Collapse
Affiliation(s)
- S Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda n. 9, 20122, Milano, Italy,
| | | | | | | |
Collapse
|
6
|
Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev 2014; 13:96-102. [PMID: 24051103 DOI: 10.1016/j.autrev.2013.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
|
7
|
Bozrova SV, Levitsky VA, Nedospasov SA, Drutskaya MS. Imiquimod: The biochemical mechanisms of immunomodulatory and anti-inflammatory activity. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bozrova S, Levitsky V, Nedospasov S, Drutskaya M. Imiquimod: the biochemical mechanisms of immunomodulatory and anti-inflammatory activity. ACTA ACUST UNITED AC 2013; 59:249-66. [DOI: 10.18097/pbmc20135903249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Imidazoquinolins represent a new group of compounds that recently entered into clinical practice as anti-tumor and anti-viral immune modulators. They are low molecular weight synthetic guanosine-like molecules. Although imiquimod, the most widely used imidazoquinolin, is recommended for the treatment of several forms of skin cancer and papillomas, the molecular mechanisms of its action are not fully understood. In particular, imiquimod has been characterized as a specific agonist of Toll-like receptor 7 (TLR7) and is widely used in this capacity in a large number of experimental studies and clinical trials. However, detailed analysis of the published data with the use of imiquimod, suggests that its biological activity can not be explained only by interaction with TLR7. There are indications of a direct interaction of imiquimod with adenosine receptors and other molecules that regulate the synthesis of cyclic adenosine monophosphate. A detailed understanding of the biochemical basis of imiquimod immunomodulating and antitumor effect will increase its clinical effectiveness and accelerate the development of new drugs with similar but improved medical properties. This review summarizes the published data concerning the effects of imiquimod on a variety of intracellular biochemical processes and signaling pathways.
Collapse
Affiliation(s)
- S.V. Bozrova
- Engelhardt Institute of Molecular Biology RAS; Department of Immunology, Biological Faculty, Lomonosov Moscow State University
| | - V.A. Levitsky
- Engelhardt Institute of Molecular Biology RAS; Oncology Department Johns Hopkins University School of Medicine
| | - S.A. Nedospasov
- Engelhardt Institute of Molecular Biology RAS; Department of Immunology, Biological Faculty, Lomonosov Moscow State University
| | - M.S. Drutskaya
- Engelhardt Institute of Molecular Biology RAS; Department of Immunology, Biological Faculty, Lomonosov Moscow State University
| |
Collapse
|
9
|
Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, Buonaguro L. Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 2012; 3:1203-22. [PMID: 21995572 DOI: 10.2217/imt.11.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) represent the bridging cell compartment between a variety of nonself antigens (i.e., microbial, cancer and vaccine antigens) and adaptive immunity, orchestrating the quality and potency of downstream immune responses. Because of the central role of DCs in the generation and regulation of immunity, the modulation of DC function in order to shape immune responses is gaining momentum. In this respect, recent advances in understanding DC biology, as well as the required molecular signals for induction of T-cell immunity, have spurred many experimental strategies to use DCs for therapeutic immunological approaches for infections and cancer. However, when DCs lose control over such 'protective' responses - by alterations in their number, phenotype and/or function - undesired effects leading to allergy and autoimmune clinical manifestations may occur. Novel therapeutic approaches have been designed and currently evaluated in order to address DCs and silence these immunopathological processes. In this article we present recent concepts of DC biology and some medical implications in view of therapeutic opportunities.
Collapse
Affiliation(s)
- Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (Vaxinfectio), University of Antwerp, B-2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Al-Jarrah M, Matalka I, Aseri HA, Mohtaseb A, Smirnova IV, Novikova L, Stehno-Bittel L, Alkhateeb A. Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes. J Clin Med Res 2011; 2:207-14. [PMID: 21629542 PMCID: PMC3104659 DOI: 10.4021/jocmr444e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2010] [Indexed: 12/13/2022] Open
Abstract
Background Endometrial cancer is one of the most common types of gynecologic cancers. The ability of exercise to reduce the risk of endometrial cancer in women with type 2 diabetes has been established, but no studies have examined this link in type 1 diabetes.A randomized, controlled animal study was designed using a standard rat model of type 1 diabetes. The goal of this study was to investigate the ability of exercise to prevent increased levels of endometrial cancer biomarkers, estrogen receptor (ERα) and p16, and endometrial hyperplasia associated with diabetes. Methods Forty female rats were randomized into four groups: sedentary control, exercise control, sedentary or exercised diabetic. Diabetes was induced by alloxan injection. A 4-week treadmill training program was initiated with the development of diabetes. Endometrial tissues were evaluated for hyperplasia and ERα and p16 levels and subcellular localization using microscopy. Results Severe diabetes lead to hyperplasia in the endometrial tissue in 70% of sedentary diabetic rats. Exercise-trained diabetic rats and the non-diabetic rats displayed no hyperplasia. The expression of ERα increased significantly (p < 0.02) while the expression level of p16 decreased significantly (p < 0.04) in the diabetic sedentary group compared to the non-diabetic groups. Exercise training led to a reversal in the percentage of p16 and ERα positive cells in diabetic rats. Conclusions Severe diabetes leads to hyperplasia of the endometrial tissue and increased ERα levels and decreased p16 levels in rats, which can be prevented with aerobic exercise. Keywords Diabetes; Estrogen receptor alpha; P16; Endometrial hyperplasia; Endometrial cancer; Exercise
Collapse
Affiliation(s)
- Muhammed Al-Jarrah
- Department of Allied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND The novel immunosuppressive molecule, CD200, has been reported to induce immunoregulation after interaction with its receptor(s), CD200R(s), in part at least through augmented induction of regulatory T-cell populations. Independent studies have also described increased expression of indoleamine-2,3-dioxygenase after CD200R triggering, whereas others have provided evidence that TGF-beta is important for the induction or function of many populations of regulatory T cells. We have asked whether a hybrid molecule in which a soluble fusion protein containing CD200, CD200Fc, was linked to TGF-beta through a glycine linker (Gly6) functions as a superior immunosuppressant molecule when compared with CD200Fc or TGF-beta alone, or in combination. METHODS The hybrid molecule CD200FcGly6TGF-beta was expressed by transient transfection in CHO cells and purified over a protein A column. Functional activity of this and recombinant CD200Fc or TGF-beta alone were assessed in mixed leukocyte cultures (MLCs) and in skin graft rejection in vivo. RESULTS Immunosuppression mediated by CD200FcGly6TGF-beta is dependent on both functional CD200 and TGF-beta moieties, as indicated by inhibition of suppression using anti-CD200 or anti-TGF-beta antibodies. Using as responder cells, using antigen-presenting cell from mice with a deletion of the CD200R gene and responder T cells from mice with siRNA-mediated suppression of expression of the TGF-betaII receptor, we show that suppression follows binding to TGF-betaRII on T cells, and CD200R1 on antigen-presenting cells. Indoleamine-2,3-dioxygenase inhibitors did not attenuate suppression by CD200FcGly6TGF-beta. CONCLUSION CD200FcGly6TGF-beta is a potent immunosuppressant in vivo and in vitro.
Collapse
|
12
|
Steinborn A, Engst M, Haensch GM, Mahnke K, Schmitt E, Meuer S, Sohn C. Small for gestational age (SGA) neonates show reduced suppressive activity of their regulatory T cells. Clin Immunol 2009; 134:188-97. [PMID: 19837002 DOI: 10.1016/j.clim.2009.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 09/04/2009] [Accepted: 09/06/2009] [Indexed: 01/11/2023]
Abstract
Little information exists concerning the role of fetal regulatory T cells (Tregs) during intrauterine development. We examined whether complications such as reduced birth weight or the occurrence of preterm labor were associated with deficiencies in the number or in the immunosuppressive activity of Tregs in the fetal circulation. Their total number did not change during normal or complicated pregnancy. In contrast, their level of FoxP3 expression decreased continuously with gestational age and was significantly reduced in the presence of spontaneous term, but not preterm labor. In small for gestational age (SGA) neonates, FoxP3 expression was constantly decreased when compared to age matched healthy neonates. In accordance with the low FoxP3 expression, the suppressive activity of the Tregs from spontaneously term delivered and from SGA babies was significantly reduced. We propose that the level of FoxP3 expression in the fetal Tregs may be a potential regulator of their suppressive activity.
Collapse
Affiliation(s)
- Andrea Steinborn
- Department of Obstetrics and Gynecology, University of Heidelberg, Voss-Strasse 9, 69115 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
O'Neill K, Guth A, Biller B, Elmslie R, Dow S. Changes in Regulatory T Cells in Dogs with Cancer and Associations with Tumor Type. J Vet Intern Med 2009; 23:875-81. [DOI: 10.1111/j.1939-1676.2009.0333.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Bopp T, Dehzad N, Reuter S, Klein M, Ullrich N, Stassen M, Schild H, Buhl R, Schmitt E, Taube C. Inhibition of cAMP degradation improves regulatory T cell-mediated suppression. THE JOURNAL OF IMMUNOLOGY 2009; 182:4017-24. [PMID: 19299699 DOI: 10.4049/jimmunol.0803310] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naturally occurring regulatory T cells (nTreg cells) are crucial for the maintenance of peripheral tolerance. We have previously shown that a key mechanism of their suppressive action is based on a contact-dependent transfer of cAMP from nTreg cells to responder T cells. Herein, we further elucidate the important role of cAMP for the suppressive properties of nTreg cells. Prevention of cAMP degradation by application of the phosphodiesterase 4 inhibitor rolipram led to strongly increased suppressive potency of nTreg cells for Th2 cells in vitro and in vivo. Detailed analyses revealed that rolipram caused, in the presence of nTreg cells, a synergistic increase of cAMP in responder Th2 cells. In vivo, the application of nTreg cells in a strictly Th2-dependent preclinical model of asthma had only a marginal effect. However, the additional treatment with rolipram led to a considerable reduction of airway hyperresponsiveness and inflammation in a prophylactic as well as in a therapeutic model. This amelioration was correlated with enhanced cAMP-levels in lung Th2 cells in vivo. Collectively, these data support our observation that cAMP has a key function for nTreg cell-based suppression and they clearly demonstrate that the effect of cAMP on T responder cells can be greatly enhanced upon application of phosphodiesterase 4 inhibitors.
Collapse
Affiliation(s)
- Tobias Bopp
- Institute for Immunology, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boucek J, Mrkvan T, Chovanec M, Kuchar M, Betka J, Boucek V, Hladikova M, Betka J, Eckschlager T, Rihova B. Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck. J Cell Mol Med 2009; 14:426-33. [PMID: 19183242 PMCID: PMC3837595 DOI: 10.1111/j.1582-4934.2008.00650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Regulatory T cells (Treg) are important regulators of anti-cancer immune responses, and an increase in Treg frequency was observed in the blood of cancer patients. Blood samples from 112 patients with head and neck squamous cell carcinoma antigen (HNSCC) were obtained at the time of tumour diagnosis, and lymphocyte subpopulations (CD3+; CD3−CD16+CD56+; CD4+; CD8+; CD19+; CD4+CD45RA+) with emphasis on Treg counts (CD3+CD4+CD25+), complete blood count and tumour markers (squamous cell carcinoma [SCC]; CEA; α-1-antitrypsin [AAT]; Cyfra 21–1; C-reactive protein [CRP]) were analysed. The data were grouped according to TNM classification, and their significance for the course of the disease at an interval of 1 year after the end of the therapy was determined. The percentage of CD8+ cells increased and the CD/D8 ratio decreased with tumour grade. The ratio of B lymphocytes decreased in patients with locoregional metastases (11.25%versus 9.22%). Treg (15.2%) and CD4+ cells (45.3%) increased, while NK cells (11.8%) decreased in HNSCC patients compared to controls (9.0%, 38.1% and 15.8%, respectively). The data obtained at time of diagnosis were used to assess the significance of tumour markers (SCC, Cyfra 21–1 and AAT) for evaluation of prognosis. The erythrocyte counts (4.64 × 1012/l versus 4.45 × 1012/l) and haemoglobin levels (14.58 g/dl versus 14.05 g/dl) decreased, while Treg counts (8.91%versus 15.70%) increased in patients with early recurrence. Our results show that examination of these parameters could be helpful for prognostication in HNSCC patients and aid improvement of treatment strategy.
Collapse
Affiliation(s)
- Jan Boucek
- Charles University, 1st Faculty of Medicine, Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Motol, V Uvalu, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Doria A, Sarzi-Puttini P, Shoenfeld Y. Infections, rheumatism and autoimmunity: the conflicting relationship between humans and their environment. Autoimmun Rev 2008; 8:1-4. [PMID: 18707029 DOI: 10.1016/j.autrev.2008.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andrea Doria
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Italy.
| | | | | |
Collapse
|
17
|
Abstract
Numerous species of metal ions cause immunosensitization in humans. Possible approaches to determine those occupational and environmental exposures to metals that result in immunological changes include lymphocyte transformation assay, cytokine profiling, and measurement of lymphocyte subpopulations. In two previous papers, we considered lymphocyte transformation assay [1] and cytokine profiling [2]. Here we review the effects of exposures to metals on lymphocyte subpopulations. Specific consideration is given to beryllium, chromium, cobalt, nickel, palladium and platinum, cadmium, gold, mercury, and lead. Analysis of the scientific literature shows that immunosensitizing metals may have influences on the lymphocyte subset composition, but only in a few instances does exposure to metals cause reproducible shifts of lymphocyte subpopulations. If lymphocyte subpopulations are analyzed, each diagnostic step, including indication, sample handling, analytic procedure, and data interpretation, should adhere to good quality assurance and quality control.
Collapse
|