Derdak A, Jędrzejowska I, Mąkol J. An overview of chelicerate ovaries, with special reference to mites - myths and facts.
Micron 2023;
167:103417. [PMID:
36773594 DOI:
10.1016/j.micron.2023.103417]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/23/2023]
Abstract
In arthropods of the subphylum Chelicerata a panoistic ovary, in which all germline cells differentiate into oocytes, prevails. Among the chelicerates, mites are believed to show a great variety of the structure of the female gonads. In general, the knowledge of the ovarian structure in mites is fragmentary and patchy. In both evolutionary lines, Acariformes and Parasitiformes, apart from the panoistic ovary, the meroistic ovary, in which the oocytes grow supported by their sibling cells, the nurse cells, occurs. The presence of the meroistic ovary is considered an apomorphic state. Previous studies revealed a various structure of the meroistic ovary in different mite taxa, and the differences came down, inter alia, to a different number and location of the nurse cells in relation to the oocytes. Here we provide a comprehensive review of the structure of the Chelicerata ovary, with special reference to the mite ovary. We also provide our preliminary results of the analysis of ovarian structure in two representatives of terrestrial Parasitengona (Acariformes), Allothrombium fuliginosum (Trombidiidae) and Erythraeus cinereus (Erythraeidae), performed using light, confocal and electron transmission microscopy. The analyses allowed for verification of data published before. In A. fuliginosum we showed the presence of the nurse cells in the ovarian wall, so the ovary should be classified as meroistic. In meroistic ovary of E. cinereus we found that each oocyte is connected to several mononucleated nurse cells. The verification of literature data and broadening the knowledge of the structure of the female gonad in mites, will result in estimating the usefulness of the ovary traits in phylogenetic analyses and will provide the basis for inference about the directions of evolutionary changes of female gonad at lower systematic levels.
Collapse