1
|
DeLorenzo ME, Key PB, Chung KW, Aaby K, Hausman D, Jean C, Pennington PL, Pisarski EC, Wirth EF. Multi-stressor Effects of Ultraviolet Light, Temperature, and Salinity on Louisiana Sweet Crude Oil Toxicity in Larval Estuarine Organisms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:461-473. [PMID: 33528594 DOI: 10.1007/s00244-021-00809-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
When oil is spilled into the environment its toxicity is affected by abiotic conditions. The cumulative and interactive stressors of chemical contaminants and environmental factors are especially relevant in estuaries where tidal fluctuations cause wide variability in salinity, temperature, and ultraviolet (UV) light penetration, which is an important modifying factor for polycyclic aromatic hydrocarbon (PAH) toxicity. Characterizing the interactions of multiple stressors on oil toxicity will improve prediction of environmental impacts under various spill scenarios. This study examined changes in crude oil toxicity with temperature, salinity, and UV light. Oil exposures included high-energy, water-accommodated fractions (HEWAFs) and thin oil sheens. Larval (24-48 h post hatch) estuarine species representing different trophic levels and habitats were evaluated. Mean 96 h LC50 values for oil prepared as a HEWAF and tested under standard conditions (20 ppt, 25 °C, No-UV) were 62.5 µg/L tPAH50 (mud snails), 198.5 µg/L (grass shrimp), and 774.5 µg/L (sheepshead minnows). Thin oil sheen 96 h LC50 values were 5.3 µg/L tPAH50 (mud snails), 14.7 µg/L (grass shrimp), and 22.0 µg/L (sheepshead minnows) under standard conditions. UV light significantly increased the toxicity of oil in all species tested. Oil toxicity also was greater under elevated temperature and lower salinity. Multi-stressor (oil combined with either increased temperature, decreased salinity, or both) LC50 values were reduced to 3 µg/L tPAH50 for HEWAFs and < 1.0 µg/L tPAH50 for thin oil sheens. Environmental conditions at the time of an oil spill will significantly influence oil toxicity and organismal response and should be taken into consideration in toxicity testing and oil spill damage assessments.
Collapse
Affiliation(s)
- Marie E DeLorenzo
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA.
| | - Peter B Key
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Katy W Chung
- CSS, Inc. Under Contract to NOAA, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Kaitlin Aaby
- St. Mary's College of Maryland, St. Mary's City, MD, USA
| | | | | | - Paul L Pennington
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Emily C Pisarski
- CSS, Inc. Under Contract to NOAA, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Edward F Wirth
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, 219 Fort Johnson Rd., Charleston, SC, 29412, USA
| |
Collapse
|
2
|
DeLorenzo ME, Evans BN, Chung KW, Key PB, Fulton MH. Effects of salinity on oil dispersant toxicity in the eastern mud snail, Ilyanassa obsoleta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21476-21483. [PMID: 28748435 DOI: 10.1007/s11356-017-9784-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Chemical dispersants can be a beneficial method for breaking up oil slicks; however, their use in mitigation could pose potential toxic effects on the marine ecosystem. Dispersants may be transported to lower salinity habitats, where toxicity data for aquatic species have not been established. This study examined the effect of salinity on oil dispersant toxicity in the eastern mud snail, Ilyanassa obsoleta, using two dispersants authorized for oil spill response, Corexit® 9500A and Finasol® OSR 52. Median lethal toxicity values (LC50) and sublethal effects were examined at 10, 20, and 30 ppt salinity in adult and larval mud snails. Two biomarkers (lipid peroxidation and acetylcholinesterase) were used to measure sublethal effects. The 96-h static renewal LC50 values indicated significant differences in toxicity between dispersants and salinities. Larval snails were significantly more sensitive than adult snails to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Larval snails were more sensitive to dispersants at lower salinity, but adult snails were more sensitive at higher salinities. Dispersants increased lipid peroxidation and decreased acetylcholinesterase activity. These results demonstrate that dispersant toxicity varies among compounds and organism life stages, and that physicochemical properties of the environment, such as salinity, can affect the potential toxicity to estuarine species.
Collapse
Affiliation(s)
- Marie E DeLorenzo
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA.
| | | | - Katy W Chung
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA
- JHT, Inc., Charleston, SC, USA
| | - Peter B Key
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA
| | - Michael H Fulton
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, 219 Fort Johnson Rd, Charleston, SC, 29412, USA
| |
Collapse
|
3
|
Gharbiah M, Cooley J, Leise EM, Nakamoto A, Rabinowitz JS, Lambert JD, Nagy LM. The snail Ilyanassa: a reemerging model for studies in development. Cold Spring Harb Protoc 2010; 2009:pdb.emo120. [PMID: 20147120 DOI: 10.1101/pdb.emo120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ilyanassa obsoleta is a marine gastropod that is a long-standing and very useful model for studies of embryonic development. It is especially important as a model for the spiralian development program, a distinctive mode of early development shared by a large group of animal phyla, but poorly understood. Ilyanassa adults are readily obtainable and easy to keep in the laboratory, and they produce large numbers of embryos throughout most of the year. The embryos are amenable to classic embryological manipulation techniques as well as a growing number of molecular approaches. In this article, we present an overview of aspects of its biology and use as a model organism.
Collapse
Affiliation(s)
- Maey Gharbiah
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|