1
|
Mancia G, Schumacher H, Böhm M, Grassi G, Teo KK, Mahfoud F, Parati G, Redon J, Yusuf S. Impact of seasonal blood pressure changes on visit-to-visit blood pressure variability and related cardiovascular outcomes. J Hypertens 2024; 42:1269-1281. [PMID: 38690947 PMCID: PMC11198955 DOI: 10.1097/hjh.0000000000003759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Visit-to-visit blood pressure (BP) variability associates with an increased risk of cardiovascular events. We investigated the role of seasonal BP modifications on the magnitude of BP variability and its impact on cardiovascular risk. METHODS In 25 390 patients included in the ONTARGET and TRANSCEND trials, the on-treatment systolic (S) BP values obtained by five visits during the first two years of the trials were grouped according to the month in which they were obtained. SBP differences between winter and summer months were calculated for BP variability quintiles (Qs), as quantified by the coefficient of variation (CV) of on-treatment mean SBP from the five visits. The relationship of BP variability with the risk of cardiovascular events and mortality was assessed by the Cox regression model. RESULTS SBP was approximately 4 mmHg lower in summer than in winter regardless of confounders. Winter/summer SBP differences contributed significantly to each SBP-CV quintile. Increase of SBP-CV from Q1 to Q5 was associated with a progressive increase in the adjusted hazard ratio (HR) of the primary endpoint of the trials, i.e. morbid and fatal cardiovascular events. This association was even stronger after removal of the effect of seasonality from the calculation of SBP-CV. A similar trend was observed for secondary endpoints. CONCLUSIONS Winter/summer SBP differences significantly contribute to visit-to-visit BP variability. However, this contribution does not participate in the adverse prognostic significance of visit-to-visit BP variations, which seems to be more evident after removal of the BP effects of seasonality from visit-to-visit BP variations.
Collapse
Affiliation(s)
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | - Koon K. Teo
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Felix Mahfoud
- Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | - Josep Redon
- Department of Medicine, INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
2
|
Zhang H, Zhang X, Jiang X, Dai R, Zhao N, Pan W, Guo J, Fan J, Bao S. Mindfulness-based intervention for hypertension patients with depression and/or anxiety in the community: a randomized controlled trial. Trials 2024; 25:299. [PMID: 38698436 PMCID: PMC11529483 DOI: 10.1186/s13063-024-08139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE To evaluate mindfulness-based intervention for hypertension with depression and/or anxiety. METHODS 10-week mindfulness-based intervention, including health education for hypertension, exclusively for the control group, was administered to the intervention group to assist sixty hypertension patients with depression/anxiety. Among them, the intervention group comprised 8 men and 22 women, with a mean age of 60.02 years and a mean duration of hypertension of 6.29 years. The control group consisted of 14 men and 16 women with a mean age of 57.68 years and a mean duration of hypertension of 6.32 years. The severity of depressive and/or anxiety symptoms was assessed using the 9-item Patient Health Questionnaire (PHQ-9) and the 7-item Generalized Anxiety Disorder scale (GAD-7), along with blood pressure (BP) measurements taken twice daily. The study utilized a self-made self-efficacy scale and awareness of physical and mental health to evaluate mental health and state. RESULTS The depression PHQ-9 or GAD-7 scores reduced by 21.1% or 17.8% in the mindfulness-based intervention group, compared to the control (Z = -2.040, P = 0.041) post 10-week period, suggesting significant reduction in anxiety/stress. These results were consistent with a reduction in systolic BP of 12.24 mm Hg (t = 6.041, P = 0.000). The self-efficacy score of the mindfulness intervention group significantly improved compared to the control (t = 7.818, P < 0.001), while the awareness of physical and mental health in the mindfulness intervention group significantly improved compared to the control (χ2 = 5.781, P = 0.016). CONCLUSION Mindfulness-based, short-term focused interventions provide modest relief for depression and/or anxiety and are effective in lowering blood pressure and improving self-efficacy scores. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1900028258. Registered 16 December 2019, https://www.chictr.org.cn/showproj.html?proj=43627 .
Collapse
Affiliation(s)
- Hailiang Zhang
- Center for Laboratory and Simulation Training, School of Public Health, Center for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, 730101, Gansu, China
- Collaborative Innovation Center for Traditional Chinese Medicine Prevention and, Control of Environmental and Nutrition-Related Diseases in Northwest China, Lanzhou, 730101, Gansu, China
- Department of Mental Health, Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, 730030, Gansu, China
| | - Xiangrong Zhang
- Department of Chinese Medicine, Center of Hekou Town, Xigu District, Lanzhou, 730094, Gansu, China
| | - Xiaomei Jiang
- Department of Psychosomatic and Sleep Medicine, Gansu Gem Flower Hospital, Xigu District, Lanzhou, 730060, Gansu, China
| | - Runjing Dai
- Center for Laboratory and Simulation Training, School of Public Health, Center for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, 730101, Gansu, China
| | - Na Zhao
- Department of Hospital Infection-Control, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730020, Gansu, China
| | - Weimin Pan
- Department of Mental Health, Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, 730030, Gansu, China
| | - Jiaohong Guo
- Department of Vasculo-Cardiology, Pingliang Second People's Hospital, Kongtong District, Pingliang, 744000, Gansu, China.
| | - Jingchun Fan
- Center for Laboratory and Simulation Training, School of Public Health, Center for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, 730101, Gansu, China.
- Collaborative Innovation Center for Traditional Chinese Medicine Prevention and, Control of Environmental and Nutrition-Related Diseases in Northwest China, Lanzhou, 730101, Gansu, China.
| | - Shisan Bao
- Center for Laboratory and Simulation Training, School of Public Health, Center for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, 730101, Gansu, China.
- Collaborative Innovation Center for Traditional Chinese Medicine Prevention and, Control of Environmental and Nutrition-Related Diseases in Northwest China, Lanzhou, 730101, Gansu, China.
| |
Collapse
|
3
|
Ye XF, Wang WYY, Wang XY, Huang QF, Sheng CS, Li Y, Wang JG. Seasonal variation in ambulatory blood pressure control in patients on clinic blood pressure-guided antihypertensive treatment. J Hypertens 2024; 42:909-916. [PMID: 38230620 DOI: 10.1097/hjh.0000000000003666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND We investigated seasonal variation in ambulatory blood pressure control in hypertensive patients on clinic blood pressure-guided antihypertensive treatment. METHODS The study participants were hypertensive patients enrolled in an 8-week therapeutic study. Antihypertensive treatment was initiated with long-acting dihydropyridine calcium channel blockers amlodipine 5 mg/day or the gastrointestinal therapeutic system (GITS) formulation of nifedipine 30 mg/day, with the possible up-titration to amlodipine 10 mg/day or nifedipine-GITS 60 mg/day at 4 weeks of follow-up. RESULTS The proportion of up-titration to higher dosages of antihypertensive drugs at 4 weeks of follow-up was higher in patients who commenced treatment in autumn/winter ( n = 302) than those who commenced treatment in spring/summer ( n = 199, 24.5 vs. 12.0%, P < 0.001). The control rate of clinic blood pressure, however, was lower in autumn/winter than in spring/summer at 4 (56.7 vs. 70.7%, P = 0.003) and 8 weeks of follow-up (52.5 vs. 74.9%, P < 0.001). At 8 weeks, patients who commenced treatment in autumn/winter, compared with those who commenced treatment in spring/summer, had a significantly ( P ≤0.03) smaller daytime (mean between-season difference -3.2/-2.8 mmHg) but greater nighttime SBP/DBP reduction (3.6/1.6 mmHg). Accordingly, at 8 weeks, the prevalence of nondippers was significantly ( P < 0.001) higher in spring/summer than in autumn/winter for both SBP (54.8 vs. 30.0%) and DBP (53.4 vs. 28.8%). CONCLUSION Clinic blood pressure-guided antihypertensive treatment requires a higher dosage of medication in cold than warm seasons, which may have led to over- and under-treatment of nighttime blood pressure, respectively.
Collapse
Affiliation(s)
- Xiao-Fei Ye
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Yuan-Yue Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Yu Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiovascular Medicine, Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Xu Y, Han Y, Chen W, Chatzidiakou L, Yan L, Krause A, Li Y, Zhang H, Wang T, Xue T, Chan Q, Barratt B, Jones RL, Liu J, Wu Y, Zhao M, Zhang J, Kelly FJ, Zhu T. Susceptibility of hypertensive individuals to acute blood pressure increases in response to personal-level environmental temperature decrease. ENVIRONMENT INTERNATIONAL 2024; 185:108567. [PMID: 38460242 DOI: 10.1016/j.envint.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Environmental temperature is negatively associated with blood pressure (BP), and hypertension may exacerbate this association. The aim of this study is to investigate whether hypertensive individuals are more susceptible to acute BP increases following temperature decrease than non-hypertensive individuals. METHODS The study panel consisted of 126 hypertensive and 125 non-hypertensive (n = 251) elderly participants who completed 940 clinical visits during the winter of 2016 and summer of 2017 in Beijing, China. Personal-level environmental temperature (PET) was continuously monitored for each participant with a portable sensor platform. We associated systolic BP (SBP) and diastolic BP (DBP) with the average PET over 24 h before clinical visits using linear mixed-effects models and explored hourly lag patterns for the associations using distributed lag models. RESULTS We found that per 1 °C decrease in PET, hypertensive individuals showed an average (95 % confidence interval) increase of 0.96 (0.72, 1.19) and 0.28 (0.13, 0.42) mmHg for SBP and DBP, respectively; and non-hypertensive participants showed significantly smaller increases of 0.28 (0.03, 0.53) mmHg SBP and 0.14 (-0.01, 0.30) mmHg DBP. A lag pattern analysis showed that for hypertensive individuals, the increases in SBP and DBP were greatest following lag 1 h PET decrease and gradually attenuated up to lag 10 h exposure. No significant BP change was observed in non-hypertensive individuals associated with lag 1-24 h PET exposure. The enhanced increase in PET-associated BP in hypertensive participants (i.e., susceptibility) was more significant in winter than in summer. CONCLUSIONS We found that a decrease in environmental temperature was associated with acute BP increases and these associations diminished over time, disappearing after approximately 10 hours. This implies that any intervention measures to prevent BP increases due to temperature drop should be implemented as soon as possible. Such timely interventions are particularly needed for hypertensive individuals especially during the cold season due to their increased susceptibility.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Lia Chatzidiakou
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Li Yan
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Anika Krause
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Yilin Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Hanbin Zhang
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Queenie Chan
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Roderic L Jones
- Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Jing Liu
- Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Beijing, China
| | - Meiping Zhao
- College of Chemistry, Peking University, Beijing, China
| | - Junfeng Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK.
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
5
|
Seto H, Toki H, Kitora S, Oyama A, Yamamoto R. Seasonal variations of the prevalence of metabolic syndrome and its markers using big-data of health check-ups. Environ Health Prev Med 2024; 29:2. [PMID: 38246652 PMCID: PMC10808004 DOI: 10.1265/ehpm.23-00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND It is crucial to understand the seasonal variation of Metabolic Syndrome (MetS) for the detection and management of MetS. Previous studies have demonstrated the seasonal variations in MetS prevalence and its markers, but their methods are not robust. To clarify the concrete seasonal variations in the MetS prevalence and its markers, we utilized a powerful method called Seasonal Trend Decomposition Procedure based on LOESS (STL) and a big dataset of health checkups. METHODS A total of 1,819,214 records of health checkups (759,839 records for men and 1,059,375 records for women) between April 2012 and December 2017 were included in this study. We examined the seasonal variations in the MetS prevalence and its markers using 5 years and 9 months health checkup data and STL analysis. MetS markers consisted of waist circumference (WC), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), fasting plasma glucose (FPG). RESULTS We found that the MetS prevalence was high in winter and somewhat high in August. Among men, MetS prevalence was 2.64 ± 0.42 (mean ± SD) % higher in the highest month (January) than in the lowest month (June). Among women, MetS prevalence was 0.53 ± 0.24% higher in the highest month (January) than in the lowest month (June). Additionally, SBP, DBP, and HDL-C exhibited simple variations, being higher in winter and lower in summer, while WC, TG, and FPG displayed more complex variations. CONCLUSIONS This finding, complex seasonal variations of MetS prevalence, WC, TG, and FPG, could not be derived from previous studies using just the mean values in spring, summer, autumn and winter or the cosinor analysis. More attention should be paid to factors affecting seasonal variations of central obesity, dyslipidemia and insulin resistance.
Collapse
Affiliation(s)
- Hiroe Seto
- Graduate School of Human Sciences, Osaka University, Osaka 565-0871, Japan
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
| | - Hiroshi Toki
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
- Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan
| | - Shuji Kitora
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
| | - Asuka Oyama
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
| | - Ryohei Yamamoto
- Health Care Division, Health and Counseling Center, Osaka University, Osaka 560-0043, Japan
- Laboratory of Behavioral Health Promotion, Department of Health Promotion, Graduate School of Medicine, Osaka University, Osaka 565-0043, Japan
| |
Collapse
|
6
|
Cheng BJ, Li H, Meng K, Li TL, Meng XC, Wang J, Wang C, Jiang N, Sun MJ, Yang LS, Zhu XY, Liu R. Short-term effects of heatwaves on clinical and subclinical cardiovascular indicators in Chinese adults: A distributed lag analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108358. [PMID: 38056095 DOI: 10.1016/j.envint.2023.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
AIMS Previous studies have related heat waves to morbidity and mortality of cardiovascular diseases; however, potential mechanisms remained limited. Our aims were to investigate the short-term effects of heat waves on a series of clinical/subclinical indicators associated with cardiovascular health. METHODS Our study used 80,574 health examination records from the Health Management Center of Nanjing Zhongda Hospital during the warm seasons of 2019-2021, including 62,128 participants. A total of 11 recognized indicators of cardiovascular risk or injury were assessed. Air pollution and meteorological data were obtained from the Nanjing Ecological Environment Bureau and the China Meteorological Data Network, respectively. Heat waves were defined as a daily average temperature over the 95th percentile for three or more consecutive days from May to September. We used a combination of linear mixed effects models and distributed lag nonlinear models to assess the lagged effects of heat waves on clinical and subclinical cardiovascular indicators. Stratified analyses based on individuals' characteristics, including gender, age, body mass index (BMI), diabetes, and hypertension, were also performed. RESULTS Heat waves were related to significant changes in most indicators, with the magnitude of effects generally peaking at a lag of 0 to 3 days. Moreover, the cumulative percentage changes over lag 0-7 days were -0.82 % to -2.55 % in blood pressure, 1.32 % in heart rate, 0.20 % to 2.66 % in systemic inflammation markers, 0.36 % in a blood viscosity parameter, 9.36 % in homocysteine, and 1.35 % to 3.25 % in injuring myocardial enzymes. Interestingly, females and males showed distinct susceptibilities in different indicators. Stronger effects were also found in participants aged 50 years or over, individuals with abnormal BMI status, and patients with diabetes. CONCLUSION Short-term exposure to heat waves could significantly alter clinical/subclinical cardiovascular indicator profiles, including blood pressure changes, increased heart rate, acute systemic inflammation, elevated blood viscosity, and myocardial injury.
Collapse
Affiliation(s)
- Bei-Jing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ke Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Tian-Lin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xing-Chen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Chun Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ming-Jun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lin-Sheng Yang
- School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xin-Yi Zhu
- The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
7
|
Chen T, Ge J, Luo X. Effects of indoor temperature and its fluctuation on blood pressure and its variability. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02469-5. [PMID: 37410169 DOI: 10.1007/s00484-023-02469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/13/2023] [Accepted: 04/03/2023] [Indexed: 07/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the number one health threat globally. Adverse indoor thermal environments are associated with excess mortality caused by CVDs in the cold season. While many studies have focused on the impact of indoor temperature on CVDs, none has considered the fluctuation of indoor temperature. To quantify the effect of indoor temperature on blood pressure and the effect of indoor temperature fluctuation on blood pressure variability (BPV), 172 middle-aged and elderly people in areas that experience both hot summers and cold winters in China completed a household survey regarding their characteristics and living habits. A hierarchical linear model (HLM) was used to analyze the impact of indoor temperature on home blood pressure. A multiple linear model was used to analyze the effect of indoor temperature fluctuation on day-to-day home blood pressure variability. The results showed that there was a significant negative correlation between morning temperature below 18 °C and blood pressure, especially systolic blood pressure (SBP). At the same time, morning temperature fluctuations have an independent influence on BPV, and a deviation of morning temperature fluctuation greater than 1.1 °C significantly increased BPV. Morning temperature and its fluctuation threshold for the rise of SBP and its variability of middle-aged and elderly people were clarified, which can provide a basis for the design, operation, and evaluation of residential thermal environmental health performance for the middle-aged and elderly population in this area, thereby reducing the cardiovascular health risk of the corresponding population.
Collapse
Affiliation(s)
- Ting Chen
- College of Civil Engineering and Architecture, Zhejiang University, Zhejiang, 330009, China
| | - Jian Ge
- College of Civil Engineering and Architecture, Zhejiang University, Zhejiang, 330009, China
| | - Xiaoyu Luo
- College of Civil Engineering and Architecture, Zhejiang University, Zhejiang, 330009, China.
- Center for Balance Architecture, Zhejiang University, Zhejiang, 330009, China.
| |
Collapse
|
8
|
Liu P, Chen Z, Xia X, Wang L, Li X. Potential role of ambient temperature as a trigger for intracerebral hemorrhage: a time-stratified case-crossover study in Tianjin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80988-80995. [PMID: 37310604 DOI: 10.1007/s11356-023-27942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
The adverse effects of ambient temperature on human health are receiving increasing attention, yet evidence of its impact on intracerebral hemorrhage (ICH) onset is limited. Here, the relationship between ambient temperature and ICH was evaluated. A time-stratified case-crossover analysis was performed based on 4051 ICH patients admitted to five stroke units in Tianjin between January 2014 and December 2020. Conditional logistic regression was applied to evaluate the associations between the daily mean temperature (Tm) or daily temperature range (DTR) and ICH onset. We found a negative association between Tm and ICH onset (OR = 0.977, 95% CI 0.968-0.987) but not between DTR and ICH onset. In stratified analyses, men and individuals aged ≥ 60 years were more susceptible to low-ambient temperature effects; corresponding adjusted ORs were 0.970 (95% CI 0.956-0.983) and 0.969 (95% CI 0.957-0.982), respectively. Tm significantly affected patients with deep ICH (OR = 0.976, 95% CI 0.965-0.988), but had no effect on lobar ICH. There was also seasonal heterogeneity in the effect of Tm on ICH onset, with Tm being negatively associated with ICH onset only in the warm season (OR = 0.961, 95% CI 0.941-0.982). Results suggest that the low-ambient temperature might trigger ICH onset, especially for the male and elderly population, providing important health guidance to prevent cold exposure-induced ICH.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Tianjin, 300211, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Tianjin, 300211, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Tianjin, 300211, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, No.23, Pingjiang Road, Tianjin, 300211, China.
| |
Collapse
|
9
|
Fan P, Xue X, Hu J, Qiao Q, Yin T, Yang X, Chen X, Hou Y, Chen R. Ambient temperature and ambulatory blood pressure: An hourly-level, longitudinal panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160854. [PMID: 36521627 DOI: 10.1016/j.scitotenv.2022.160854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Variations of blood pressure (BP) related to air temperature have been reported previously; however, no evidence is available regarding the association of hourly ambient temperature with ambulatory blood pressure. METHODS We conducted a longitudinal panel study among 1895 patients from an outpatient department who received repeated ambulatory blood pressure monitoring in Urumqi, China between July 2020 and December 2021. We obtained hourly ambient temperature from the nearest monitoring station to the residential address, and measured 4 ambulatory blood pressure indicators. Linear mixed-effect model combined with distributed lag models were applied to investigate the cumulative associations of hourly temperature with BP. RESULTS A total of 97,466 valid blood pressure measurements were evaluated. We observed almost linear and monotonically decreasing relationships between temperature and blood pressure. The effects occurred in the same hour, attenuated thereafter and became insignificant approximately 36 h. A 10 °C decrease in temperature was significantly associated with increments of 0.84 mmHg in systolic blood pressure, 0.56 mmHg in diastolic blood pressure, 1.38 mmHg in mean arterial pressure, and 0.66 mmHg in pulse pressure over lag 0 to 36 h. Stronger associations were found among patients of female sex, age between 18 and 65 years, overweight or obesity, minority, less education or in the cold season, as well as those without hypertension or with coronary heart disease, or did not take anti-hypertension medication. CONCLUSION Our study provides robust evidence that hourly ambient temperature is inversely associated with ambulatory blood pressure. It also highlights a linear relationship between decreased ambient temperature and elevated BP, which may have implications for the prevention and management of hypertension in susceptible populations.
Collapse
Affiliation(s)
- Ping Fan
- Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China; Department of Function, Bazhou people's Hospital, Korla, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Qingxia Qiao
- Department of Function, Bazhou people's Hospital, Korla, China
| | - Tingting Yin
- Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xiaoling Yang
- Department of Science and Education, Bazhou people's Hospital, Korla, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yuemei Hou
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Wu Q, Yang M, Wu K, Su H, Huang C, Xu Z, Ho HC, Zheng H, Zhang W, Tao J, Dang TAT, Hossain MZ, Khan MA, Bogale D, Cheng J. Abnormal ambient temperature change increases the risk of out-of-hospital cardiac arrest: A systematic review and meta-analysis of exposure types, risk, and vulnerable populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160554. [PMID: 36574560 DOI: 10.1016/j.scitotenv.2022.160554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND There is growing evidence in support of a short-term association between ambient temperature and cardiac arrest attacks that is a serious manifestation of cardiovascular disease and has a high incidence and low survival rate. However, it remains unrecognized about the hazardous temperature exposure types, exposure risk magnitude, and vulnerable populations. OBJECTIVES We comprehensively summarize prior epidemiological studies looking at the short-term associations of out-of-hospital cardiac arrest (OHCA) with various temperature exposures among different populations. METHODS We searched PubMed and Web of Science databases from inception to October 2021 for eligible English language. Temperature exposure was categorized into three types: heat (included high temperature, extreme heat, and heatwave), cold (included low temperature and extreme cold), and temperature variation (included diurnal temperature range and temperature change between two adjacent days). Meta-analysis weighted by inverse variance was used to pool effect estimates. RESULTS This study included 15 studies from 8 countries, totaling around 1 million OHCA events. Extreme heat and extreme cold were significantly associated with an increased risk of OHCA, and the pooled relative risks (RRs) were 1.071 [95 % confidence interval (CI): 1.019-1.126] and 1.662 (95%CI: 1.138-2.427), respectively. The risk of OHCA was also elevated by heatwaves (RR = 1.248, 95%CI: 1.091-1.427) and more intensive heatwaves had a greater effect. Notably, the elderly and males seemed to be more vulnerable to the effects of heat and cold. However, we did not observe a significant association between temperature variation and the risk of OHCA (1.005, 95%CI: 0.999-1.012). CONCLUSION Short-term exposure to heat and cold may be novel risk factors for OHCA. Considering available studies in limited regions, the temperature effect on OHCA should be urgently confirmed in different regions.
Collapse
Affiliation(s)
- Qiyue Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Min Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Keyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, QLD, Australia
| | - Hung Chak Ho
- Department of Anaesthesiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Thi Anh Thu Dang
- Institute for Community Health Research, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Alfazal Khan
- Matlab Health Research Centre, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Daniel Bogale
- College of Health Sciences, Arsi University, Asela, Ethiopia
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
11
|
Yan M, Xie Y, Zhu H, Ban J, Gong J, Li T. Cardiovascular mortality risks during the 2017 exceptional heatwaves in China. ENVIRONMENT INTERNATIONAL 2023; 172:107767. [PMID: 36716635 DOI: 10.1016/j.envint.2023.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/11/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Climate change has made disastrous heatwaves more frequent. Heatwave-related health impacts are much more devastating for more intense heatwaves. In the summer of 2017, exceptional heatwaves occurred in many regions, including China. This study aims to evaluate the cardiovascular mortality risk associated with the 2017 exceptional heatwaves and compare the mortality risk of the severe heatwaves with those in other years. Using daily data for a spectrum of cardiovascular mortality and temperature for 102 Chinese counties (2014-2017), we estimated the association between heatwave and mortality by generalized linear mixed-effects models. Compared with matched non-heatwave days, mortality risks on heatwaves days in 2017 increased 27.8% (95% CI, 14.8-42.3%), 26.7% (8.0-48.5%), 30.1% (10.2-53.7%), 27.3% (1.4-59.9%), 32.2% (3.4-68.4%), and 25.2% (1.0-57.7%) for total circulatory diseases, cerebrovascular disease, ischemic heart disease (IHD), acute IHD, chronic IHD, and myocardial infarction. The 2017 exceptional heatwaves impacted ischemic heart disease mortality and myocardial infarction mortality more than heatwaves in 2014-2016. Here we show that the severe heatwaves in 2017 posed catastrophic death threats for those under-studied cardiovascular diseases.
Collapse
Affiliation(s)
- Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, China; Future Cities Lab, Beihang University, China
| | - Huanhuan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Ban
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jicheng Gong
- Beijing Innovation Center for Engineering Science and Advanced Technology and State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
12
|
Lin Z, Yang L, Chen P, Wei T, Zhang J, Wang Y, Gao L, Zhang C, Zhao L, Wang Q, Wang H, Xu D. Short-term effects of personal exposure to temperature variability on cardiorespiratory health based on subclinical non-invasive biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157000. [PMID: 35777570 DOI: 10.1016/j.scitotenv.2022.157000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Growing literatures have explored the cardiorespiratory health effects of the daily temperature, but such effects of temperature variability remain unclear. We investigated the acute associations of personal levels of temperature variability with cardiorespiratory biomarkers. This is a panel study with four repeated measurements among forty eligible college students in Hefei, Anhui Province, China. We collected personal-level temperature data using temperature/humidity data loggers. Temperature variability parameters included diurnal temperature range (DTR), the standard-deviation of temperature (SDT) and temperature variability (TV). Cardiorespiratory health indicators included three BP parameters [systolic BP (SBP), diastolic BP (DBP) and mean article pressure (MAP)], fractional exhaled nitric oxide (FeNO), and four saliva biomarkers [C-reactive protein (CRP), cortisol, alpha-amylase and lysozyme]. Linear mixed-effect models were then used to assess the associations of temperature variability with these cardiorespiratory biomarkers. We found that short-term exposure to the three temperature variability parameters was associated with these cardiorespiratory biomarkers. The magnitude, direction and significance of these associations varied by temperature variability parameters, by biomarkers and by lags of exposure. Specifically, temperature variability parameters were inversely associated with BP and saliva lysozyme; positively associated with airway inflammation biomarkers (FeNO and saliva CRP) and stress response biomarkers (saliva cortisol and alpha-amylase). The results were robust to further control for air pollutants, and these associations were more prominent in females and in subjects with abnormal body mass index. Our findings suggested that acute exposure to temperature variability could significantly alter cardiorespiratory biomarker profiles among healthy young adults in China.
Collapse
Affiliation(s)
- Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Lingli Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Qunan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
13
|
Lin YCD, Cai Y, Huang HY, Liang D, Li J, Tang Y, Hong HC, Yan Q, Huang HD, Li Z. Air pollution and blood pressure in the elderly: evidence from a panel study in Nanjing, China. Heliyon 2022; 8:e10539. [PMID: 36132186 PMCID: PMC9483594 DOI: 10.1016/j.heliyon.2022.e10539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background Air pollution is known to have notable negative effects on human health. Recently, the effect of air pollution on blood pressure among the elderly has attracted researchers’ attention. However, the existing evidence is not consistent, given that positive, null, and negative outcomes are presented in the literature. In this study, we investigated the relationship between blood pressure (BP) and indices of air pollutants (PM2.5, PM10, and air quality index) in a specific elderly population through a panel study to address this knowledge gap. Methods We obtained repeated BP measurements from January 2017 to May 2019 in a panel of 619 elderly with a total of 5106 records in Nanjing, China. Data on daily indices of ambient air pollutants, including fine particulate matter with an aerodynamic diameter of ≤ 2.5μ m (PM2.5), ≤ 10μ m (PM10), and air quality index (AQI) of the same period were obtained. We evaluated the association between BP and average concentrations of air pollutants in the past one-week, two-week, and four-week lags before measuring the BP. The non-linear panel regression models were used with fixed- and mixed-effects to control age, gender, and temperature. Results In the non-linear panel fixed-effects model, the average concentration of PM2.5 is significantly associated with systolic BP (SBP) at all lags but is only significantly correlated with diastolic BP (DBP) at a one-week lag. An interquartile range (IQR) increase of one-week average moving PM2.5 (38.86 μg/m3) of our sample increases the SBP and DBP by 7.68% and 6.9%, respectively. PM10 shows the same pattern of effect on BP as PM2.5. AQI shows less significant associations with BP. In the non-linear mixed-effects model, the average concentrations of PM2.5 and PM10 are significantly associated with SBP at all lags but have no significant effect on DBP at one- and two-week lags. AQI is only significantly associated with DBP at a one-week lag. Conclusions Exposures to ambient particulate matter (PM2.5 and PM10) were associated with increased BP among older people, indicating a potential link between air pollution and the high prevalence of hypertension. Air pollution is a well-recognized risk factor for future cardiovascular diseases and should be reduced to prevent hypertension among the elderly.
Collapse
Affiliation(s)
- Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yutong Cai
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30329, United States
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Qiting Yan
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhaoyuan Li
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
14
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanisms of cold exposure-induced ischemic stroke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155514. [PMID: 35472344 DOI: 10.1016/j.scitotenv.2022.155514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Growing evidence suggests that cold exposure is to some extent a potential risk factor for ischemic stroke. At present, although the mechanism by which cold exposure induces ischemic stroke is not fully understood, some potential mechanisms have been mentioned. First, the seasonal and temperature variability of cerebrovascular risk factors (hypertension, hyperglycemia, hyperlipidemia, atrial fibrillation) may be involved. Moreover, the activation of sympathetic nervous system and renin-angiotensin system and their downstream signaling pathways (pro-inflammatory AngII, activated platelets, and dysfunctional immune cells) are also major contributors. Finally, the influenza epidemics induced by cold weather are also influencing factors that cannot be ignored. This article is the first to systematically and comprehensively describe the underlying mechanism of cold-induced ischemic stroke, aiming to provide more preventive measures and medication guidance for stroke-susceptible individuals in cold season, and also provide support for the formulation of public health policies.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
15
|
Ni W, Schneider A, Wolf K, Zhang S, Chen K, Koenig W, Peters A, Breitner S. Short-term effects of cold spells on plasma viscosity: Results from the KORA cohort study in Augsburg, Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119071. [PMID: 35231540 DOI: 10.1016/j.envpol.2022.119071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
As the underlying mechanisms of the adverse effects of cold spells on cardiac events are not well understood, we explored the effects of cold spells on plasma viscosity, a blood parameter linked to cardiovascular disease. This cross-sectional study involved 3622 participants from the KORA S1 Study (1984-1985), performed in Augsburg, Germany. Exposure data was obtained from the Bavarian State Office for the Environment. Cold spells were defined as two or more consecutive days with daily mean temperatures below the 3rd, 5th, or 10th percentile of the distribution. The effects of cold spells on plasma viscosity were explored by generalized additive models with distributed lag nonlinear models (DLNM). We estimated cumulative effects at lags 0-1, 0-6, 0-13, 0-20, and 0-27 days separately. Cold spells (mean temperature <3rd, <5th or <10th percentile) were significantly associated with an increase in plasma viscosity with a lag of 0-1 days [%change of geometric mean (95% confidence interval): 1.35 (0.06-2.68), 1.35 (0.06-2.68), and 2.49 (0.34-4.69), respectively], and a lag of 0-27 days [18.81 (8.97-29.54), 17.85 (8.29-28.25), and 7.41 (3.35-11.0), respectively]. For the analysis with mean temperature <3rd or 10th percentile, we also observed significant associations at lag 0-20 days [8.34 (0.43-16.88), and 4.96 (1.68, 8.35), respectively]. We found that cold spells had significant immediate and longer lagged effects on plasma viscosity. This finding supports the complex interplay of multiple mechanisms of cold on adverse cardiac events and enriches the knowledge about how cold exposure acts on the human body.
Collapse
Affiliation(s)
- Wenli Ni
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany.
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06520, USA; Yale Center on Climate Change and Health, Yale School of Public Health, New Haven, CT, USA
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Zhang Y, Zhao Y, Wei C, Li Y, Aslam H, Feng Q, Huang Q, Zheng Y, Lv F, Hao W, Li J. Association of common medical comorbidities with early renal damage in the Chinese tropics with essential hypertension. BMC Nephrol 2021; 22:366. [PMID: 34736407 PMCID: PMC8570023 DOI: 10.1186/s12882-021-02576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Urine albumin/creatinine ratio (UACR) is an important marker of early renal damage (ERD) caused by hypertension. Recent studies showed that blood pressure was a significant inverse association with temperature and climate. The purposes of our study were sought to explore the association of common medical comorbidities with ERD, and find independent risk factors to ERD in Chinese tropics with essential hypertension. METHODS From January 2018 to December 2019, we assessed UACR in a total of 599 hypertensive Chinese Hainan patients. We defined ERD as a UACR between 30 mg/g and 300 mg/g. We analysed differences between qualitative variables using the chi-squared (χ2) test. We calculated correlations between UACR and age, hypertension duration (HD), systolic blood pressure (SBP), and diastolic blood pressure (DBP) using the Spearman's rho test. To determine the odds ratio (OR), we evaluated binary logistic regression models. RESULTS Among the 599 patients, 281 (46.9%) were found to have ERD. ERD and factors related to sex, body mass index (BMI), and SBP did not differ significantly (all, p>0.05). Our main findings showed that age, HD, and DBP were associated with ERD (p<0.01, respectively). Furthermore, age ≥ 65 years, HD ≥10 years, DBP ≥ 90 mmHg, SBP ≥ 160 mmHg, and diabetes differed significantly according to ERD status (p < 0.05, respectively). In multivariate analysis using stepwise regression, age (OR = 1.468), DBP (OR = 1.853), and diabetes (OR = 2.031) were significant independent predictors of ERD. The area under the receiver operating characteristic (ROC) curve was 0.677, and the sensitivity and specificity of the optimal cut-off value were 44.5 and 81.1%, respectively. CONCLUSIONS Common medical comorbidities are associated with ERD; age, DBP, and diabetes are independent risk factors for ERD in patients with essential hypertension who live in the Chinese tropics. Early monitoring of the UACR, as well as control of blood glucose and DBP, can effectively delay ERD.
Collapse
Affiliation(s)
- Yuzhuo Zhang
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ying Zhao
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chenglu Wei
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yongrong Li
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hira Aslam
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingmin Feng
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qing Huang
- Marketing Department, Sanofi (Hangzhou), Haikou, China
| | - Yu Zheng
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Feifen Lv
- First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Hao
- Cardiovascular Department, Xi'an Hospital of Traditional Chinese Medicine, No.69, Fengcheng 8th Road, Weiyang District, Xi'an City, 710021, Shaanxi Province, China
| | - Jike Li
- First Affiliated Hospital of Hainan Medical University, Haikou, China. .,Cardiovascular Department, Xi'an Hospital of Traditional Chinese Medicine, No.69, Fengcheng 8th Road, Weiyang District, Xi'an City, 710021, Shaanxi Province, China.
| |
Collapse
|
17
|
|
18
|
Chen X, Tu P, Sun XL, Hu TY, Wan J, Hu YW, Zhou HL, Su H. The Impact on Blood Pressure of a Short-Term Change in Indoor Temperature. Int J Gen Med 2021; 14:1507-1511. [PMID: 33911895 PMCID: PMC8075305 DOI: 10.2147/ijgm.s291431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study is to evaluate the impact on blood pressure (BP) of a 10°C change in room temperature (between 18°C and 28°C). Methods A total of 112 volunteers, 56 males and 56 females, 55 with and 57 without hypertension, were enrolled in the study. First, the participants were placed in a 25°C room. Second, they were randomly assigned to either a 28°C (group A) or an 18°C room (group B). Finally, they were moved from the 28°C to the 18°C room, or vice versa. They stayed in each room for 20 minutes. Seated BP was measured at the 17th and 19th minute in each room, and the average was used. The difference in the subject's BP between the second two rooms was recorded as delta BP. Results The baseline systolic BP (SBP), age, gender distribution, and incidence of hypertension were similar between the two groups. In group A, the decrease in room temperature of 10°C induced a mean rise in SBP of 4.1 mmHg. In group B, the increase of 10°C caused SBP to decrease by 4.0 mmHg. When compared with the group without hypertension, the group with hypertension had a significantly higher rise in mean SBP (6.8 vs 1.2 mmHg) as a result of the decrease in temperature and a significantly higher drop in SBP (7.3 vs 1.2 mmHg) as a result of the increase in temperature. The participants in the group with hypertension were older. Conclusion A 10°C change in room temperature, from 18°C to 28°C, for 20 min can cause a significant change in SBP. The extent of this change is more obvious in the older group.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ping Tu
- Department of Post Anesthesia Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xing-Lan Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ting-Ying Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jia Wan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yi-Wei Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hui-Ling Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hai Su
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
19
|
Lee DW, Kim TH, Choi HJ, Wee SY. Delayed-type retrobulbar hematoma caused by low temperature after reconstruction of inferior blow-out fracture. Arch Craniofac Surg 2021; 22:110-114. [PMID: 33957737 PMCID: PMC8107453 DOI: 10.7181/acfs.2021.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
Retrobulbar hemorrhage is a disastrous condition that can lead to permanent blindness. As such, rapid diagnosis and treatment are critical. Here, we report a patient who presented with retrobulbar hemorrhage following an orbital floor fracture. Restoration of inferior orbital wall with porous polyethylene implant was underwent. Four days after the orbital floor reconstruction, the patient smoked a cigarette outdoors in –3˚C weather. Cold temperature and smoking caused an increase in his systemic blood pressure. The elevated blood pressure increased intraorbital pressure to the extent of causing central retinal artery occlusion and exacerbated oozing. During exploratory surgery, 3 mL of hematoma and diffuse oozing without arterial bleeding were observed. Prompt diagnosis and treatment prevented vision impairment. Few studies have reported on the risk factors for retrobulbar hemorrhage. This case showed that daily activities, such as exposure to cold weather or tobacco smoking, could be risk factors for retrobulbar hemorrhage.
Collapse
Affiliation(s)
- Da Woon Lee
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Tae Hyung Kim
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Hwan Jun Choi
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Syeo Young Wee
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Gumi Hospital, Gumi, Korea
| |
Collapse
|
20
|
Ni Y, Miao Q, Zheng R, Miao Y, Zhang X, Zhu Y. Individual sensitivity of cold pressor, environmental meteorological factors associated with blood pressure and its fluctuation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:1509-1517. [PMID: 32415619 DOI: 10.1007/s00484-020-01928-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/30/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have examined the associations of meteorological factors with blood pressure; however, these associations have not fully elucidated, especially lacking of evidence from cohort study, little information about the associations of cold pressor sensitivity with blood pressure and its fluctuation. The objective of this study was to investigate the outdoor and indoor temperature, barometric pressure, humidity, and cold pressor sensitivity with blood pressure and its fluctuation. Forty-eight healthy subjects were recruited, and response of blood pressure to cold exposure was measured with cold pressor test (CPT). Then, all the subjects were followed up, and blood pressure was measured every half a month in a period of consecutive 12 months. Multiple panel analysis with random-effects generalized least squares (GLS) regression was used to analyze the effect of the outdoor and indoor temperature, barometric pressure, humidity, and response to cold pressor exposure on blood pressure. Outdoor and indoor temperature and humidity were found to be independently associated with blood pressure (all the P values < 0.05). The response to cold exposure positively associated with blood pressure and its fluctuation (P < 0.05). The subjects with higher cold pressor sensitivity had about 4.7 mmHg higher maximum difference of SBP in 1 year than the subjects with lower sensitivity. Outdoor and indoor temperature, humidity, and response to cold exposure are associated with blood pressure and its fluctuation. These findings provided extending evidence on blood pressure management in clinic and preventive practice.
Collapse
Affiliation(s)
- Yaqin Ni
- Department of Infection Control, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Qin Miao
- Health Service Center of Wenxin Community, Xi-Hu District, Hangzhou, 310012, China
| | - Ruizhi Zheng
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Ying Miao
- Health Service Center of Xixi Community, Xi-Hu District, Hangzhou, 310012, China
| | - Xuhui Zhang
- Affiliated Hangzhou Center of Disease Control and Prevention, Zhejiang University School of Public Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, China.
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
21
|
Zheng S, Zhu W, Wang M, Shi Q, Luo Y, Miao Q, Nie Y, Kang F, Mi X, Bai Y. The effect of diurnal temperature range on blood pressure among 46,609 people in Northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138987. [PMID: 32428804 DOI: 10.1016/j.scitotenv.2020.138987] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A large number of studies have found a positive association between diurnal temperature range (DTR) and cardiovascular diseases (CVDs) incidence and mortality. Few studies regarding the effects of DTR on blood pressure (BP) are available. OBJECTIVE To investigate the effects of DTR on BP in Jinchang, northwestern China. METHODS Based on a prospective cohort research, a total of 46,609 baseline survey data were collected from 2011 to 2015. The meteorological observation data and environmental monitoring data were collected in the same period. The generalized additive model (GAM) was used to estimate the relationship between DTR and BP after adjusting for confounding variables. RESULTS Our study found that there was a positive linear correlation between DTR and systolic blood pressure (SBP) and plus pressure (PP), and a negative linear correlation between DTR and diastolic blood pressure (DBP). With a 1 °C increase of DTR, SBP and PP increased 0.058 mmHg (95%CI: 0.018-0.097) and 0.114 mmHg (95%CI: 0.059-0.168) respectively, and DBP decreased 0.039 mmHg (95%CI:-0.065 ~ -0.014). There was a significant interaction between season and DTR on SBP and PP. DTR had the greatest impact on SBP and PP in hot season. The association between DTR and BP varied significantly by education level. CONCLUSION There was a significant association between DTR and BP in Jinchang, an area with large temperature change at high altitudes in northwestern China. These results provide new evidence that DTR is an independent risk factor for BP changes among general population. Therefore, effective control and management of BP in the face of temperature changes can help prevent CVDs.
Collapse
Affiliation(s)
- Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China.
| | - Wenzhi Zhu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Qin Shi
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yan Luo
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Qian Miao
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| | - Yonghong Nie
- Jinchang Center for Disease Prevention and Control, Jinchang 737100, China
| | - Feng Kang
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737103, China
| | - Xiuying Mi
- Jinchang Meteorological Service, Jinchang 737100, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China
| |
Collapse
|
22
|
Yu B, Jin S, Wang C, Yan S, Zhou X, Cui X, Tang Z, Luan Q, Guo Y, Bian Z, Li L, Chen Z, Na L. The association of outdoor temperature with blood pressure, and its influence on future cardio-cerebrovascular disease risk in cold areas. J Hypertens 2020; 38:1080-1089. [PMID: 32371798 PMCID: PMC7614986 DOI: 10.1097/hjh.0000000000002387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore whether lower outdoor temperature increases cardio-cerebrovascular disease risk through regulating blood pressure and whether indoor heating in winter is beneficial to prevent cardio-cerebrovascular disease in cold areas. METHODS We analyzed the data of 38 589 participants in Harbin from the China Kadoorie Biobank (CKB) during 2004-2008, with an average of 7.14-year follow-up. Linear regression analysis was performed to estimate the relationship between outdoor temperature and blood pressure. Cox regression analysis and logistic regression analysis were used to analyze the association of blood pressure with cardio-cerebrovascular event risk. Mediation analysis was performed to explore the role of blood pressure in the association between outdoor temperature and cardio-cerebrovascular events risk. RESULTS There was an increase of 6.7 mmHg in SBP and 2.1 mmHg in DBP for each 10 °C decrease in outdoor temperature when outdoor temperature was higher than 5 °C. There was an inverse association between outdoor temperature and cardio-cerebrovascular event morbidity. The increases in blood pressure and cardio-cerebrovascular event morbidity were attenuated in months when central heating was fully provided. Participants with hypertension have higher risks of cardio-cerebrovascular disease (hazard ratio 1.347; 95% CI 1.281--1.415), CVD (hazard ratio 1.347; 95% CI 1.282--1.416), MACE (hazard ratio 1.670; 95% CI 1.560--1.788) and stroke (hazard ratio 1.683; 95% CI 1.571--1.803). Mediation analysis demonstrated that the association between outdoor temperature and cardio-cerebrovascular events risk was potentially mediated by blood pressure. CONCLUSION Temperature-driven blood pressure potentially mediates the association between outdoor temperature and cardio-cerebrovascular events risk. Indoor heating in winter is probably beneficial to cardio-cerebrovascular disease prevention by inhibition of blood pressure increase.
Collapse
Affiliation(s)
- Bo Yu
- Department of Chronic Disease, Harbin Nangang District CDC, Harbin, China
| | - Shanshan Jin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- Collaborative Innovation Center for Biomedicine, Medical Technology College, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chi Wang
- Department of Chronic Disease, Harbin Nangang District CDC, Harbin, China
| | | | - Xue Zhou
- Heilongjiang Provincial CDC, Harbin, China
| | | | - Zhen Tang
- Harbin Nangang District CDC, Harbin, China
| | - Qing Luan
- Department of Chronic Disease, Harbin Nangang District CDC, Harbin, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lixin Na
- Collaborative Innovation Center for Biomedicine, Medical Technology College, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
23
|
Seasonal blood pressure variation assessed by different measurement methods: systematic review and meta-analysis. J Hypertens 2020; 38:791-798. [DOI: 10.1097/hjh.0000000000002355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kang Y, Han Y, Guan T, Wang X, Xue T, Chen Z, Jiang L, Zhang L, Zheng C, Wang Z, Gao R. Clinical blood pressure responses to daily ambient temperature exposure in China: An analysis based on a representative nationwide population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135762. [PMID: 31818583 DOI: 10.1016/j.scitotenv.2019.135762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/03/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Limited evidence is available regarding the potential heterogeneity of ambient temperature on blood pressure (BP) in various climate zones. OBJECTIVES To explore the effect of daily ambient temperature on BP in various climate zones across 31 provinces in China. METHODS A representative population sample (n = 451,770) were obtained from the China Hypertension Survey study (CHS) from October 2012 to December 2015. Survey seasons were divided into warm and cold seasons. Survey sites were divided into three climate zones as subtropical, temperate monsoon and temperate continental zones. RESULTS After adjustment for confounders, an overall 10 °C decrease in ambient temperature was statistically associated 0.74 mmHg (95% CI: 0.69, 0.79) and 0.60 mmHg (95% CI: -0.63, -0.57) rise for SBP and DBP, respectively. In the warm season, U-shaped exposure-response curves were observed between ambient temperature and BP in temperate monsoon and continental zones, and liner curves in other zones. A greater SBP change due to a lower temperature was observed in subtropical zones, so did DBP in temperate continental zones, especially for cold season. Female, rural and elderly populations were more susceptible to cold weather than their counterparts. DISCUSSION There is a geographical disparity between temperature and BP across different climate zones, which should been taken into consideration when maintaining stable blood pressure levels.
Collapse
Affiliation(s)
- Yuting Kang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Ying Han
- Department of Cadre Health, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Tianjia Guan
- School of Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zuo Chen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Linlin Jiang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Linfeng Zhang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Congyi Zheng
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China
| | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 102308, China.
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
25
|
Seasonal variation in blood pressure: Evidence, consensus and recommendations for clinical practice. Consensus statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens 2020; 38:1235-1243. [DOI: 10.1097/hjh.0000000000002341] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Xu D, Zhang Y, Wang B, Yang H, Ban J, Liu F, Li T. Acute effects of temperature exposure on blood pressure: An hourly level panel study. ENVIRONMENT INTERNATIONAL 2019; 124:493-500. [PMID: 30685451 DOI: 10.1016/j.envint.2019.01.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Several epidemiological studies have shown that blood pressure changes with temperature based on the daily temperature and linear relationship assumption. However, little is known about the true curve shape of the relationship between temperature and blood pressure. OBJECTIVES The objective of this study was to investigate the non-linear relationship between hourly temperature and blood pressure. METHODS This is a prospective panel study comprising 100 participants in Suzhou, China. The blood pressure of each participant was measured >50 times between October 2013 and January 2016. Hourly temperature data were derived from the nearest monitoring station owned by the China Meteorological Administration. A Distributed Lag Nonlinear Model (DLNM) was used to investigate the relationship between hourly temperature and blood pressure. RESULTS We found that the relationship between hourly temperature and blood pressure was parabolic. Short-term exposure to hourly temperatures had significant cold and heat effects on systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and mean arterial pressure (MAP). The hourly temperature had a significant lag effect on blood pressure, with a lag time of 0-5 h. Alcohol users were more sensitive to the cold effects of hourly temperature, and the diabetic population was more sensitive to the heat effects of hourly temperature on PP. CONCLUSION Temperature imparts short-term effects on blood pressure. Therefore, timely protective measures during cold waves or cold weather are beneficial to maintain stable blood pressure levels to reduce the risk of blood pressure related diseases.
Collapse
Affiliation(s)
- Dandan Xu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yi Zhang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Wang
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu, China
| | - Haibing Yang
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu, China
| | - Jie Ban
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
27
|
Hu J, Shen H, Teng CG, Han D, Chu GP, Zhou YK, Wang Q, Wang B, Wu JZ, Xiao Q, Liu F, Yang HB. The short-term effects of outdoor temperature on blood pressure among children and adolescents: finding from a large sample cross-sectional study in Suzhou, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:381-391. [PMID: 30694394 DOI: 10.1007/s00484-019-01671-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/12/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Although several studies have demonstrated a short-term association between outdoor temperature and blood pressure (BP) among various adult groups, evidence among children and adolescents is lacking. One hundred ninety-four thousand one hundred four participants from 2016 Health Promotion Program for Children and Adolescents (HPPCA) were analyzed through generalized linear mixed-effects models to estimate the short-term effects of two outdoor temperature variables (average and minimum temperature) on participants' BP. Decreasing outdoor temperature was associated with significant increases in systolic BP (SBP), diastolic BP (DBP), and prevalence of hypertension during lag 0 through lag 6. Additionally, daily minimum temperature showed a more apparent association with participants' BP. The estimated increases (95% confidence interval) in SBP and DBP at lag 0 were 0.82 (0.72, 0.92) mmHg and 2.28 (2.20, 2.35) mmHg for a 1 °C decrease in daily minimum temperature, while those values were 0.11 (0.10, 0.12) mmHg and 0.25 (0.24, 0.26) mmHg for a 1 °C decrease in daily average temperature, respectively. The effects of temperature on BP were stronger among female, as well as those with young age and low body mass index. It demonstrated that short-term decreases in outdoor temperature were significantly associated with rises in BP among children and adolescents. This founding has some implications for clinical management and research of BP. Meanwhile, public health intervention should be designed to reduce the exposure to cold temperature for protecting children and adolescents' BP.
Collapse
Affiliation(s)
- Jia Hu
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Hui Shen
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Chen-Gang Teng
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Di Han
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Guang-Ping Chu
- Health Center for Women and Children of Gusu District, Suzhou, Jiangsu, China
| | - Yi-Kai Zhou
- MOE Key Lab of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bo Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jing-Zhi Wu
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Qi Xiao
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Fang Liu
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Hai-Bing Yang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
28
|
Hanazawa T, Asayama K, Watabe D, Tanabe A, Satoh M, Inoue R, Hara A, Obara T, Kikuya M, Nomura K, Metoki H, Imai Y, Ohkubo T. Association Between Amplitude of Seasonal Variation in Self-Measured Home Blood Pressure and Cardiovascular Outcomes: HOMED-BP (Hypertension Objective Treatment Based on Measurement By Electrical Devices of Blood Pressure) Study. J Am Heart Assoc 2018; 7:JAHA.117.008509. [PMID: 29728372 PMCID: PMC6015300 DOI: 10.1161/jaha.117.008509] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The clinical significance of long‐term seasonal variations in self‐measured home blood pressure (BP) has not been elucidated for the cardiovascular disease prevention. Methods and Results Eligible 2787 patients were classified into 4 groups according to the magnitude of their seasonal variation in home BP, defined as an average of all increases in home BP from summer (July–August) to winter (January–February) combined with all decreases from winter to summer throughout the follow‐up period, namely inverse‐ (systolic/diastolic, <0/<0 mm Hg), small‐ (0–4.8/0–2.4 mm Hg), middle‐ (4.8–9.1/2.4–4.5 mm Hg), or large‐ (≥9.1/≥4.5 mm Hg) variation groups. The overall cardiovascular risks illustrated U‐shaped relationships across the groups, and hazard ratios for all cardiovascular outcomes compared with the small‐variation group were 3.07 (P=0.004) and 2.02 (P=0.041) in the inverse‐variation group and large‐variation group, respectively, based on systolic BP, and results were confirmatory for major adverse cardiovascular events. Furthermore, when the summer‐winter home BP difference was evaluated among patients who experienced titration and tapering of antihypertensive drugs depending on the season, the difference was significantly smaller in the early (September–November) than in the late (December–February) titration group (3.9/1.2 mm Hg versus 7.3/3.1 mm Hg, P<0.001) as well as in the early (March–May) than in the late (June–August) tapering group (4.4/2.1 mm Hg versus 7.1/3.4 mm Hg, P<0.001). Conclusions The small‐to‐middle seasonal variation in home BP (0–9.1/0–4.5 mm Hg), which may be partially attributed to earlier adjustment of antihypertensive medication, were associated with better cardiovascular outcomes.
Collapse
Affiliation(s)
- Tomohiro Hanazawa
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan.,Japan Development and Medical Affairs, GlaxoSmithKline KK, Tokyo, Japan
| | - Kei Asayama
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan .,Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan.,Tohoku Institute for Management of Blood Pressure, Sendai, Japan
| | - Daisuke Watabe
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan.,Department of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
| | - Ayumi Tanabe
- Department of Preventive Medicine and Public Health, School of Medicine, Keio University, Tokyo, Japan
| | - Michihiro Satoh
- Division of Public Health, Hygiene and Epidemiology, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, Japan
| | - Ryusuke Inoue
- Department of Medical Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azusa Hara
- Department of Social Pharmacy and Public Health, Showa Pharmaceutical University, Tokyo, Japan
| | - Taku Obara
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization Tohoku University, Sendai, Japan
| | - Masahiro Kikuya
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan.,Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization Tohoku University, Sendai, Japan
| | - Kyoko Nomura
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan.,Department of Public Health, Akita University Graduate School of Medicine, Akita, Japan
| | - Hirohito Metoki
- Division of Public Health, Hygiene and Epidemiology, Tohoku Medical and Pharmaceutical University Faculty of Medicine, Sendai, Japan
| | - Yutaka Imai
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan.,Tohoku Institute for Management of Blood Pressure, Sendai, Japan
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan.,Tohoku Institute for Management of Blood Pressure, Sendai, Japan
| | | |
Collapse
|
29
|
Nieuwenhuijsen MJ. Influence of urban and transport planning and the city environment on cardiovascular disease. Nat Rev Cardiol 2018; 15:432-438. [DOI: 10.1038/s41569-018-0003-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|