1
|
Deng T, Lei F, Wang Z, Wang Y, Li G, Zhu Y, Du B, Xi X. MCP-1/CCR2 axis is involved in the regulation of γδT cells in lupus nephritis. Scand J Immunol 2023; 98:e13305. [PMID: 38441377 DOI: 10.1111/sji.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 03/07/2024]
Abstract
γδT cells are important innate immune cells that are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a serious complication of SLE, characterized by the accumulation of immune cells (including γδT cells) in the target organs to participate in the disease process. Therefore, clarifying how γδT cells chemotactically migrate to target organs may be a key to developing therapeutic methods against LN. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of chemokines in LN patients and healthy controls. Real-time polymerase chain reaction (RT-PCR) and flow cytometry were used to measure the expression of chemokine receptors on the surface of γδT cells. The chemotactic migration ability of γδT cells was detected by Transwell assay. Signalling pathway activation of γδT cells was detected by Automated Capillary Electrophoresis Immunoassay and flow cytometry. The serum levels of chemokines, including monocyte chemoattractant protein-1 (MCP-1) in LN patients, were significantly increased. CCR2, the receptor of MCP-1, was also highly expressed on the surface of peripheral γδT cells in LN patients. In addition, the exogenous addition of MCP-1 can enhance chemotactic migration of γδT cells in LN patients. MCP-1 could activate STAT3 signalling in LN patients' peripheral γδT cells. γδT cells might participate in the pathogenesis of LN through MCP-1/CCR2 axis. This finding provides new opportunities for developing treatment methods against LN by targeting MCP-1/CCR2 axis.
Collapse
Affiliation(s)
- Ting Deng
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Feifei Lei
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhongyu Wang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yangbin Wang
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Gang Li
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Boyu Du
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xueyan Xi
- Institute of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Kang I, Kim Y, Lee HK. Double-edged sword: γδ T cells in mucosal homeostasis and disease. Exp Mol Med 2023; 55:1895-1904. [PMID: 37696894 PMCID: PMC10545763 DOI: 10.1038/s12276-023-00985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 09/13/2023] Open
Abstract
The mucosa is a tissue that covers numerous body surfaces, including the respiratory tract, digestive tract, eye, and urogenital tract. Mucosa is in direct contact with pathogens, and γδ T cells perform various roles in the tissue. γδ T cells efficiently defend the mucosa from various pathogens, such as viruses, bacteria, and fungi. In addition, γδ T cells are necessary for the maintenance of homeostasis because they select specific organisms in the microbiota and perform immunoregulatory functions. Furthermore, γδ T cells directly facilitate pregnancy by producing growth factors. However, γδ T cells can also play detrimental roles in mucosal health by amplifying inflammation, thereby worsening allergic responses. Moreover, these cells can act as major players in autoimmune diseases. Despite their robust roles in the mucosa, the application of γδ T cells in clinical practice is lacking because of factors such as gaps between mice and human cells, insufficient knowledge of the target of γδ T cells, and the small population of γδ T cells. However, γδ T cells may be attractive targets for clinical use due to their effector functions and low risk of inducing graft-versus-host disease. Therefore, robust research on γδ T cells is required to understand the crucial features of these cells and apply these knowledges to clinical practices.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Zhang C, Liu X, Xiao J, Jiang F, Fa L, Jiang H, Zhou L, Su W, Xu Z. γδ T cells in autoimmune uveitis pathogenesis: A promising therapeutic target. Biochem Pharmacol 2023; 213:115629. [PMID: 37257721 DOI: 10.1016/j.bcp.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Autoimmune uveitis is a non-infectious, inflammatory intraocular disease that affects the uveal and adjacent tissues. It frequently causes varying degrees of visual loss. Evidence for the strong association between activated γδ T cells and the development of autoimmune uveitis is growing. The innate and adaptive immune response are connected in the early phases by the γδ T cells that contain the γ and δ chains. γδ T cells can identify antigens in a manner that is not constrained by the MHC. When activated by various pathways, γδ T cells can not only secrete pro-inflammatory factors early on (such as IL-17), but they can also promote Th17 cells responses, which ultimately exacerbates autoimmune uveitis. Therefore, we review the mechanisms by which γδ T cells affect autoimmune uveitis in different activation and disease states. Moreover, we also prospect for immunotherapies targeting different γδ T cell-related action pathways, providing a reference for exploring new drug for the treatment of autoimmune uveitis.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Peng X, Zhang Y, Bai X, Li X, Zhao R. Phasic regulation of the ATP/P2X7 receptor signaling pathway affects the function of antigen-presenting cells in experimental autoimmune uveitis. Int Immunopharmacol 2023; 119:110241. [PMID: 37141671 DOI: 10.1016/j.intimp.2023.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine type P2 receptor that is expressed on a variety of immune cells. Recent studies have shown that P2X7R signaling is required to trigger an immune response, and P2X7R antagonist-oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study, we investigated the effect of phasic regulation of the ATP/P2X7R signaling pathway on antigen-presenting cells (APCs) by constructing an experimental autoimmune uveitis (EAU) disease model. Our results demonstrated that APCs isolated from the 1st, 4th, 7th and 11th days of EAU presented antigen function and could stimulate the differentiation of naive T cells. Moreover, after stimulation by ATP and BzATP (a P2X7R agonist), antigen presentation, promoting differentiation and inflammation were enhanced. The regulation of the Th17 cell response was significantly stronger than that of the Th1 cell response. In addition, we verified that oxATP blocked the P2X7R signaling pathway on APCs, attenuated the effect of BzATP, and significantly improved the adoptive transfer EAU induced by antigen-specific T cells cocultured with APCs. Our results demonstrated that at an early stage of EAU, the ATP/P2X7R signaling pathway regulation of APCs was time dependent, and the treatment of EAU could be achieved by intervening in P2X7R function on APCs.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yunfang Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
5
|
NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15041264. [PMID: 36831606 PMCID: PMC9954046 DOI: 10.3390/cancers15041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Immune regulation has revolutionized cancer treatment with the introduction of T-cell-targeted immune checkpoint inhibitors (ICIs). This successful immunotherapy has led to a more complete view of cancer that now considers not only the cancer cells to be targeted and destroyed but also the immune environment of the cancer cells. Current challenges associated with the enhancement of ICI effects are increasing the fraction of responding patients through personalized combinations of multiple ICIs and overcoming acquired resistance. This requires a complete overview of the anti-tumor immune response, which depends on a complex interplay between innate and adaptive immune cells with the tumor microenvironment. The NKG2A was revealed to be a key immune checkpoint for both Natural Killer (NK) cells and T cells. Monalizumab, a humanized anti-NKG2A antibody, enhances NK cell activity against various tumor cells and rescues CD8 αβ T cell function in combination with PD-1/PD-L1 blockade. In this review, we discuss the potential for targeting NKG2A expressed on tumor-sensing human γδ T cells, mostly on the specific Vδ2 T cell subset, in order to emphasize its importance and potential in the development of new ICI-based therapeutic approaches.
Collapse
|
6
|
Zhang D, Zhang N, Wang Y, Zhang Q, Wang J, Yao J. Analysis of differentially expressed genes in individuals with noninfectious uveitis based on data in the gene expression omnibus database. Medicine (Baltimore) 2022; 101:e31082. [PMID: 36254061 PMCID: PMC9575823 DOI: 10.1097/md.0000000000031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Noninfectious uveitis (NIU), an intraocular inflammation caused by immune-mediated reactions to eye antigens, is associated with systemic rheumatism and several autoimmune diseases. However, the mechanisms underlying the pathogenesis of uveitis are poorly understood. Therefore, we aimed to identify differentially expressed genes (DEGs) in individuals with NIU and to explore its etiologies using bioinformatics tools. GSE66936 and GSE18781 datasets from the gene expression omnibus (GEO) database were merged and analyzed. Functional enrichment analysis was performed, and protein-protein interaction (PPI) networks were constructed. A total of 89 DEGs were identified. Gene ontology (GO) enrichment analysis identified 21 enriched gene sets. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis identified four core enriched pathways: antigen processing and expression signaling, natural killer (NK) cell-mediated cytotoxicity signaling, glutathione metabolic signal transduction, and arachidonic acid metabolism pathways. PPI network analysis revealed an active component-target network with 40 nodes and 132 edges, as well as several hub genes, including CD27, LTF, NCR3, SLC4A1, CD69, KLRB1, KIR2DL3, KIR3DL1, and GZMK. The eight potential hub genes may be associated with the risk of developing NIU. NK cell-mediated cytotoxicity signaling might be the key molecular mechanism in the occurrence and development of NIU. Our study provided new insights on NIU, its genetics, molecular pathogenesis and new therapeutic targets.
Collapse
Affiliation(s)
- Dandan Zhang
- Dalian Women and Children’s Medical Group, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Ning Zhang
- Heilongjiang University of Chinese Medicine, China
- Dalian Port Hospital
| | - Yan Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
- Heilongjiang University of Chinese Medicine, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Jiadi Wang
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Jing Yao
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
- *Correspondence: Jing Yao, No 26 Heping Road, Xiangfang District, Harbin, China (e-mail: )
| |
Collapse
|
7
|
FTO-mediated m6A modification alleviates autoimmune uveitis by regulating microglia phenotypes via the GPC4/TLR4/NF-κB signaling axis. Genes Dis 2022. [PMID: 37492748 PMCID: PMC10363593 DOI: 10.1016/j.gendis.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Uveitis, a vision-threatening inflammatory disease worldwide, is closely related to resident microglia. Retinal microglia are the main immune effector cells with strong plasticity, but their role in uveitis remains unclear. N6-methyladenosine (m6A) modification has been proven to be involved in the immune response. Therefore, we in this work aimed to identify the potentially crucial m6A regulators of microglia in uveitis. Through the single-cell sequencing (scRNA-seq) analysis and experimental verification, we found a significant decrease in the expression of fat mass and obesity-associated protein (FTO) in retinal microglia of uveitis mice and human microglia clone 3 (HMC3) cells with inflammation. Additionally, FTO knockdown was found to aggravate the secretion of inflammatory factors and the mobility/chemotaxis of microglia. Mechanistically, the RNA-seq data and rescue experiments showed that glypican 4 (GPC4) was the target of FTO, which regulated microglial inflammation mediated by the TLR4/NF-κB pathway. Moreover, RNA stability assays indicated that GPC4 upregulation was mainly regulated by the downregulation of the m6A "reader" YTH domain family protein 3 (YTHDF3). Finally, the FTO inhibitor FB23-2 further exacerbated experimental autoimmune uveitis (EAU) inflammation by promoting the GPC4/TLR4/NF-κB signaling axis, and this could be attenuated by the TLR4 inhibitor TAK-242. Collectively, a decreased FTO could facilitate microglial inflammation in EAU, suggesting that the restoration or activation of FTO function may be a potential therapeutic strategy for uveitis.
Collapse
|
8
|
Song Y, Liu Y, Teo HY, Liu H. Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:914839. [PMID: 35747139 PMCID: PMC9210953 DOI: 10.3389/fimmu.2022.914839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
γδT cells represent a small percentage of T cells in circulation but are found in large numbers in certain organs. They are considered to be innate immune cells that can exert cytotoxic functions on target cells without MHC restriction. Moreover, γδT cells contribute to adaptive immune response via regulating other immune cells. Under the influence of cytokines, γδT cells can be polarized to different subsets in the tumor microenvironment. In this review, we aimed to summarize the current understanding of antigen recognition by γδT cells, and the immune regulation mediated by γδT cells in the tumor microenvironment. More importantly, we depicted the polarization and plasticity of γδT cells in the presence of different cytokines and their combinations, which provided the basis for γδT cell-based cancer immunotherapy targeting cytokine signals.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Haiyan Liu,
| |
Collapse
|
9
|
Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021; 10:e1329. [PMID: 34786191 PMCID: PMC8577077 DOI: 10.1002/cti2.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long‐term control of the tumor still remains a challenge. Methods This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. Results TLRL‐activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs’ activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross‐talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor‐infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. Conclusion Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.
Collapse
Affiliation(s)
- Pauline Girard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Benedicte Ponsard
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Hugo Gil
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Edwige Col
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Nathalie Sturm
- Pathology Department Institut de Biologie et Pathologie CHU Grenoble Alpes Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Olivier Manches
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
10
|
Yang ZJ, Wang BY, Wang TT, Wang FF, Guo YX, Hua RX, Shang HW, Lu X, Xu JD. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021; 10:cells10030583. [PMID: 33800865 PMCID: PMC7999753 DOI: 10.3390/cells10030583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.
Collapse
Affiliation(s)
- Ze-Jun Yang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Years Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Fei-Fei Wang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Yue-Xin Guo
- Oral Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China;
| | - Rong-Xuan Hua
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
- Correspondence:
| |
Collapse
|
11
|
Ma R, Yuan D, Guo Y, Yan R, Li K. Immune Effects of γδ T Cells in Colorectal Cancer: A Review. Front Immunol 2020; 11:1600. [PMID: 33013819 PMCID: PMC7509400 DOI: 10.3389/fimmu.2020.01600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Gamma delta (γδ) T cells can effectively recognize and kill colorectal cancer (CRC) cells, thereby suppressing tumor progression via multiple mechanisms. They also have abilities to exert a protumor effect via secreting interleukin-17 (IL-17). γδ T cells have been selected as potential immunocytes for antitumor treatment because of their significant cytotoxic activity. Immunotherapy is another potential anti-CRC strategy after an operation, chemotherapy, and radiotherapy. γδ T cell-based immunotherapy for CRC shows fewer side effects and better toleration. This review will outline the immune functions and the mechanisms of γδ T cells in the growth and progression of CRC in recent years, and summarize the immunotherapies based on γδ T cells, thus providing a direction for future γδ T cells in CRC research.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Colorectal Neoplasms/etiology
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/therapy
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Susceptibility/immunology
- Humans
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Inflammatory Bowel Diseases/complications
- Inflammatory Bowel Diseases/etiology
- Inflammatory Bowel Diseases/metabolism
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Treatment Outcome
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dawei Yuan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yizhan Guo
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Rong Yan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Cooper AJR, Lalor SJ, McLoughlin RM. Activation of Human Vδ2 + γδ T Cells by Staphylococcus aureus Promotes Enhanced Anti-Staphylococcal Adaptive Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1039-1049. [PMID: 32651220 PMCID: PMC7416323 DOI: 10.4049/jimmunol.2000143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Murine studies have shown the potential for γδ T cells to mediate immunity to Staphylococcus aureus in multiple tissue settings by the secretion of diverse cytokines. However, the role played by γδ T cells in human immune responses to S. aureus is almost entirely unknown. In this study, we establish the capacity of human Vδ2+ γδ T cells for rapid activation in response to S. aureus In coculture with S. aureus-infected monocyte-derived dendritic cells (DCs), Vδ2+ cells derived from peripheral blood rapidly upregulate CD69 and secrete high levels of IFN-γ. DCs mediate this response through direct contact and IL-12 secretion. In turn, IFN-γ released by Vδ2+ cells upregulates IL-12 secretion by DCs in a positive feedback loop. Furthermore, coculture with γδ T cells results in heightened expression of the costimulatory molecule CD86 and the lymph node homing molecule CCR7 on S. aureus-infected DCs. In cocultures of CD4+ T cells with S. aureus-infected DCs, the addition of γδ T cells results in heightened CD4+ T cell activation. Our findings identify γδ T cells as potential key players in the early host response to S. aureus during bloodstream infection, promoting enhanced responses by both innate and adaptive immune cell populations, and support their consideration in the development of host-directed anti-S. aureus treatments.
Collapse
Affiliation(s)
- Andrew J R Cooper
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Stephen J Lalor
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| |
Collapse
|