• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637272)   Today's Articles (6744)   Subscriber (50114)
For: Fang L, Chen L, Lin B, Han L, Zhu K, Song Q. Analysis of Inflammatory and Homeostatic Roles of Tissue-resident Macrophages in the Progression of Cholesteatoma by RNA-Seq. Immunol Invest 2020;50:609-621. [PMID: 32573304 DOI: 10.1080/08820139.2020.1781161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]

Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.

Collapse
Number Cited by Other Article(s)
1
Zeng L, Xie L, Hu J, He C, Liu A, Lu X, Zhou W. Osteopontin-driven partial epithelial-mesenchymal transition governs the development of middle ear cholesteatoma. Cell Cycle 2024;23:537-554. [PMID: 38662954 PMCID: PMC11135870 DOI: 10.1080/15384101.2024.2345481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/17/2024] [Indexed: 05/28/2024]  Open
2
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022;20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022]  Open

Video Abstract

  • Matthias Schürmann
    • Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
  • Peter Goon
    • Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
  • Holger Sudhoff
    • Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
Collapse
3
The Relationship between the M1/M2 Macrophage Polarization and the Degree of Ossicular Erosion in Human Acquired Cholesteatoma: An Immunohistochemical Study. J Clin Med 2022;11:jcm11164826. [PMID: 36013064 PMCID: PMC9410162 DOI: 10.3390/jcm11164826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]  Open
4
Zhang D, Li Z, Shi H, Yao Y, Du W, Lu P, Liang K, Hong L, Gao C. Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration in vivo. Bioact Mater 2022;9:134-146. [PMID: 34820561 PMCID: PMC8586031 DOI: 10.1016/j.bioactmat.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022]  Open
5
Jiang M, Dai J, Yin M, Jiang C, Ren M, Tian L. LncRNA MEG8 sponging miR-181a-5p contributes to M1 macrophage polarization by regulating SHP2 expression in Henoch-Schonlein purpura rats. Ann Med 2021;53:1576-1588. [PMID: 34477472 PMCID: PMC8425717 DOI: 10.1080/07853890.2021.1969033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA