1
|
Hamamah S, Barry F, Vannier S, Anahory T, Haahtela T, Antó JM, Chapron C, Ayoubi JM, Czarlewski W, Bousquet J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. Int J Mol Sci 2024; 25:11981. [PMID: 39596052 PMCID: PMC11594021 DOI: 10.3390/ijms252211981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Infertility, defined as the inability to obtain pregnancy after 12 months of regular unprotected sexual intercourse, has increased in prevalence over the past decades, similarly to chronic, allergic, autoimmune, or neurodegenerative diseases. A recent ARIA-MeDALL hypothesis has proposed that all these diseases are linked to dysbiosis and to some cytokines such as interleukin 17 (IL-17) and interleukin 33 (IL-33). Our paper suggests that endometriosis, a leading cause of infertility, is linked to endometrial dysbiosis and two key cytokines, IL-17 and IL-33, which interact with intestinal dysbiosis. Intestinal dysbiosis contributes to elevated estrogen levels, a primary factor in endometriosis. Estrogens strongly activate IL-17 and IL-33, supporting the existence of a gut-endometrial axis as a significant contributor to infertility.
Collapse
Affiliation(s)
- Samir Hamamah
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Barry
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Sarah Vannier
- Gynécologie Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France;
| | - Tal Anahory
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland;
| | - Josep M. Antó
- ISGlobal, Barcelona Institute for Global Health, 08036 Barcelona, Spain;
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Charles Chapron
- Service de Gynécologie-Obs., Hôpital Cochin, 75014 Paris, France;
| | - Jean-Marc Ayoubi
- Gynécologie et médecine de la Reproduction, Hôpital Foch, 92150 Suresnes, France;
| | | | - Jean Bousquet
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
2
|
Jiang C, Jin X, Li C, Wen L, Wang Y, Li X, Zhang Z, Tan R. Roles of IL-33 in the Pathogenesis of Cardiac Disorders. Exp Biol Med (Maywood) 2023; 248:2167-2174. [PMID: 37828753 PMCID: PMC10800126 DOI: 10.1177/15353702231198075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family and is believed to play important roles in different diseases by binding to its specific receptor suppression of tumorigenicity 2 (ST2). In the heart, IL-33 is expressed in different cells including cardiomyocytes, fibroblasts, endothelium, and epithelium. Although many studies have been devoted to investigating the effects of IL-33 on heart diseases, its roles in myocardial injuries remain obscure, and thus further studies are mandatory to unravel the underlying molecular mechanisms. We highlighted the current knowledge of the molecular and cellular characteristics of IL-33 and then summarized its major roles in different myocardial injuries, mainly focusing on infection, heart transplantation, coronary atherosclerosis, myocardial infarction, and diabetic cardiomyopathy. This narrative review will summarize current understanding and insights regarding the implications of IL-33 in cardiac diseases and its diagnostic and therapeutic potential for cardiac disease management.
Collapse
Affiliation(s)
- Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xuemei Jin
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji 133002, China
| | - Chunlei Li
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Luona Wen
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yuqi Wang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xiaojian Li
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220 China
| | - Zhi Zhang
- Department of Burns, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220 China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| |
Collapse
|
3
|
Wang M, Gao M, Yi Z. Biological effects of IL-33/ST2 axis on oral diseases: autoimmune diseases and periodontal diseases. Int Immunopharmacol 2023; 122:110524. [PMID: 37393839 DOI: 10.1016/j.intimp.2023.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
IL-33 is a relatively new member of the IL-1 cytokine family, which plays a unique role in autoimmune diseases, particularly some oral diseases dominated by immune factors. The IL-33/ST2 axis is the main pathway by which IL-33 signals affect downstream cells to produce an inflammatory response or tissue repair. As a newly discovered pro-inflammatory cytokine, IL-33 can participate in the pathogenesis of autoimmune oral diseases such as Sjogren's syndrome and Behcet's disease. Moreover, the IL-33/ST2 axis also recruits and activates mast cells in periodontitis, producing inflammatory chemokines and mediating gingival inflammation and alveolar bone destruction. Interestingly, the high expression of IL-33 in the alveolar bone, which exhibits anti-osteoclast effects under appropriate mechanical loading, also confirms its dual role of destruction and repair in an immune-mediated periodontal environment. This study reviewed the biological effects of IL-33 in autoimmune oral diseases, periodontitis and periodontal bone metabolism, and elaborated its potential role and impact as a disease enhancer or a repair factor.
Collapse
Affiliation(s)
- Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Mingcen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Lee YH, Song GG. Associations between blood IL-33 levels and IL-33 gene polymorphisms with susceptibility to systemic lupus erythematosus: A meta-analysis. Lupus 2023; 32:1179-1187. [PMID: 37518863 DOI: 10.1177/09612033231193788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
OBJECTIVES This study investigated the relationship between circulating interleukin-33 (IL-33) levels and systemic lupus erythematosus (SLE) along with polymorphisms in the IL-33 gene and SLE susceptibility. METHOD The MEDLINE, EMBASE, and Cochrane Library databases (to May 2023) were searched for relevant publications. Using a meta-analysis we investigated serum/plasma IL-33 levels in patients with SLE and controls, and the relationship between IL-33 rs1929992, rs1891385, rs7044343, rs1095498, and rs10975579 polymorphisms and the risk of developing SLE. RESULTS Nine studies focusing on 1,935 patients with SLE were included. IL-33 levels were significantly higher in the SLE group than in the control group (SMD = 2.140, 95% CI = 1.068-3.212, p < .001). Asian, European, and Arab groups have shown increased IL-33 levels in SLE populations, according to ethnic stratification. Regardless of the sample size, variable adjustment, data format, or publication year, the subgroup analysis showed significantly higher IL-33 levels in the SLE group. This meta-analysis supported the significance of the link between SLE and the IL-33 rs1891385 C allele (OR, 1.525; 95% CI, 11.310-1.777; p = .010). A similar association was found between the IL-33 rs1891385 C/A polymorphism and SLE, using homozygote comparisons and dominant and recessive models. However, this meta-analysis found no association between the IL-33 polymorphisms rs1929992, rs7044343, rs1095498, and rs10975579 and susceptibility to SLE. CONCLUSIONS This meta-analysis identified significantly higher levels of circulating IL-33 in patients with SLE as well as an association between IL-33 rs1891385 and SLE.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Bagheri-Hosseinabadi Z, Mirzaei MR, Aliakbari M, Abbasifard M. Association of interleukin 33 gene polymorphisms with susceptibility and regulation of inflammatory mediators in Systemic lupus erythematosus patients. Clin Rheumatol 2023; 42:2187-2197. [PMID: 37067648 DOI: 10.1007/s10067-023-06575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Studies have indicated the involvement of interleukin (IL)-33 in the pathogenesis of Systemic lupus erythematosus (SLE). This research intended to evaluate the association of IL33 gene rs1929992 and rs7044343 Single nucleotide polymorphisms (SNPs) with risk of SLE. In addition, the association between these SNPs and inflammatory cytokines was determined. METHODS In this study, 200 SLE cases and 200 healthy subjects were recruited. Using allelic discrimination Real-time PCR, IL33 gene rs1929992 and rs7044343 SNPs were genotyped. The mRNA expression levels of IL-1β, IL-6, IL-33, TNF-α were determined in the peripheral blood mononuclear cells (PBMCs). The serum levels of cytokines were also measured. RESULTS The G allele (OR = 1.57, CI: 1.18-2.08, P = 0.0017), GG genotype (OR = 2.52, CI: 1.33-4.77, P = 0.0043), and GA genotype (OR = 2.12, CI: 1.34-3.34, P = 0.0011) of rs1929992 SNP was significantly associated with an increased SLE risk. The C allele (OR = 1.44, CI: 1.08-1.90; P = 0.0105), CC genotype (OR = 2.07, CI: 1.15-3.71; P = 0.0146), and CT genotype (OR = 1.61, CI: 1.02-2.53, P = 0.0395) of rs7044343 was significantly associated with increased SLE risk. The PBMC mRNA expression and serum levels of IL-1β, IL-6, IL-33, TNF-α were significantly increased in the SLE patients compared to controls. However, there was no significant difference in the mRNA expression and serum levels of IL-1β, IL-6, IL-33, and TNF-α among the SLE patients with three genotypes for both rs1929992 and rs7044343 polymorphisms. CONCLUSIONS IL33 gene rs1929992 and rs7044343 SNPs are involved in SLE pathogenesis but they might not influence on the inflammatory pathway.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mina Aliakbari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
6
|
Murdaca G, Gangemi S, Greco M. The IL-33/IL-31 Axis in Allergic and Immune-Mediated Diseases. Int J Mol Sci 2023; 24:9227. [PMID: 37298179 PMCID: PMC10252527 DOI: 10.3390/ijms24119227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 06/12/2023] Open
Abstract
Interleukin 31 (IL-31) belongs to the IL-6 superfamily [...].
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova and IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy;
| |
Collapse
|
7
|
Hojjatipour T, Aslani S, Salimifard S, Mikaeili H, Hemmatzadeh M, Gholizadeh Navashenaq J, Ahangar Parvin E, Jadidi-Niaragh F, Mohammadi H. NK cells - Dr. Jekyll and Mr. Hyde in autoimmune rheumatic diseases. Int Immunopharmacol 2022; 107:108682. [DOI: 10.1016/j.intimp.2022.108682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
8
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|