1
|
DNA-Encoded Flagellin Activates Toll-Like Receptor 5 (TLR5), Nod-like Receptor Family CARD Domain-Containing Protein 4 (NRLC4), and Acts as an Epidermal, Systemic, and Mucosal-Adjuvant. Vaccines (Basel) 2013; 1:415-43. [PMID: 26344341 PMCID: PMC4494208 DOI: 10.3390/vaccines1040415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 01/28/2023] Open
Abstract
Eliciting effective immune responses using non-living/replicating DNA vaccines is a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded flagellin (FliC) promotes humoral as well as cellular immunity to co-delivered antigens. Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly)) produces flagellin capable of activating two innate immune receptors known to detect flagellin; Toll-like Receptor 5 (TLR5) and Nod-like Receptor family CARD domain-containing protein 4 (NRLC4). To test the ability of pFliC(-gly) to act as an adjuvant we immunized mice with plasmid encoding secreted FliC (pFliC(-gly)) and plasmid encoding a model antigen (ovalbumin) by three different immunization routes representative of dermal, systemic, and mucosal tissues. By all three routes we observed increases in antigen-specific antibodies in serum as well as MHC Class I-dependent cellular immune responses when pFliC(-gly) adjuvant was added. Additionally, we were able to induce mucosal antibody responses and Class II-dependent cellular immune responses after mucosal vaccination with pFliC(-gly). Humoral immune responses elicited by heterologus prime-boost immunization with a plasmid encoding HIV-1 from gp160 followed by protein boosting could be enhanced by use of pFliC(-gly). We also observed enhancement of cross-clade reactive IgA as well as a broadening of B cell epitope reactivity. These observations indicate that plasmid-encoded secreted flagellin can activate multiple innate immune responses and function as an adjuvant to non-living/replicating DNA immunizations. Moreover, the capacity to elicit mucosal immune responses, in addition to dermal and systemic properties, demonstrates the potential of flagellin to be used with vaccines designed to be delivered by various routes.
Collapse
|
2
|
Zhang H, Wang YF, Shen CH, Agniswamy J, Rao KV, Xu CX, Ghosh AK, Harrison RW, Weber IT. Novel P2 tris-tetrahydrofuran group in antiviral compound 1 (GRL-0519) fills the S2 binding pocket of selected mutants of HIV-1 protease. J Med Chem 2013; 56:1074-83. [PMID: 23298236 DOI: 10.1021/jm301519z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GRL-0519 (1) is a potent antiviral inhibitor of HIV-1 protease (PR) possessing tris-tetrahydrofuran (tris-THF) at P2. The high resolution X-ray crystal structures of inhibitor 1 in complexes with single substitution mutants PR(R8Q), PR(D30N), PR(I50V), PR(I54M), and PR(V82A) were analyzed in relation to kinetic data. The smaller valine side chain in PR(I50V) eliminated hydrophobic interactions with inhibitor and the other subunit consistent with 60-fold worse inhibition. Asn30 in PR(D30N) showed altered interactions with neighboring residues and 18-fold worse inhibition. Mutations V82A and I54M showed compensating structural changes consistent with 6-7-fold lower inhibition. Gln8 in PR(R8Q) replaced the ionic interactions of wild type Arg8 with hydrogen bond interactions without changing the inhibition significantly. The carbonyl oxygen of Gly48 showed two alternative conformations in all structures likely due to the snug fit of the large tris-THF group in the S2 subsite in agreement with high antiviral efficacy of 1 on resistant virus.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Abstract
Viral vectors have been developed as vaccine platforms for a number of pathogens and tumors. In particular, adenovirus (Ad)-based vectors expressing genes coding for pathogen or tumor antigens have proven efficacious to induce protective immunity. Major challenges in the use of Ad vectors are the high prevalence of anti-Ad immunity and the recent observation during an Ad-based HIV vaccine trial that led to increased HIV-1 acquisition in the presence of circulating anti-Ad5 neutralizing antibodies. In this review we summarize strategies to address these challenges and focus on modifications of the Ad capsid to enhance the adjuvant effect of anti-Ad immunogenicity and to circumvent pre-existing immunity. In addition, we summarize the current status and potential of other viral vector vaccines based on adeno-associated viruses, lentiviruses and poxviruses.
Collapse
|
5
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
6
|
Ferrantelli F, Maggiorella MT, Schiavoni I, Sernicola L, Olivieri E, Farcomeni S, Pavone-Cossut MR, Moretti S, Belli R, Collacchi B, Srivastava IK, Titti F, Cafaro A, Barnett SW, Ensoli B. A combination HIV vaccine based on Tat and Env proteins was immunogenic and protected macaques from mucosal SHIV challenge in a pilot study. Vaccine 2011; 29:2918-32. [PMID: 21338681 DOI: 10.1016/j.vaccine.2011.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 01/31/2011] [Accepted: 02/05/2011] [Indexed: 02/02/2023]
Abstract
HIV native Tat and V2 loop-deleted Env (EnvΔV2) proteins already proved safe and immunogenic in phase I clinical testing as single vaccine components. Further, a phase II vaccine trial with Tat showed intensification of the therapeutic effects of HAART in successfully treated HIV-infected individuals. Here a pilot study assessed the immunogenicity and protective efficacy of an HIV/AIDS vaccine based on the combination of Tat and EnvΔV2 proteins in cynomolgus macaques against homologous intrarectal challenge with 35 MID(50) (monkey infectious dose 50) of an R5 simian-human immunodeficiency virus (SHIV(SF162P4cy)). Upon challenge, three of four macaques immunized with Tat and EnvΔV2, and two of three monkeys immunized with EnvΔV2 alone were protected from infection. In contrast, all three control animals, which had been either administered with the adjuvants only or left untreated, and an additional monkey immunized with Tat alone became systemically infected. Protection of the macaques vaccinated with EnvΔV2 or Tat/EnvΔV2 correlated with higher peak titers of pre-challenge neutralizing antibodies obtained during the immunization period (between 70 and 3 weeks before challenge) and with anti-Env V3 loop binding antibodies assessed 3 weeks before challenge. Compared to EnvΔV2 alone, the Tat and EnvΔV2 combined vaccine elicited faster antibody responses (IgM) with a trend, early in the vaccination schedule, after the second immunization including EnvΔV2, towards broader anti-Env IgG epitope specificity and a higher ratio of neutralizing to Env-binding antibody titers. As the number of immunizations increased, vaccination with EnvΔV2 approached the immune response assessed after two inocula with the Tat/EnvΔV2 combined vaccine, even though some differences remained between groups, as indicated by anti-Env IgG epitope mapping. In fact, three weeks before challenge, plasma IgG of animals in the EnvΔV2 group showed a trend towards stronger specificity for the V1 loop and V5 loop-C5 regions of Env, whereas the Tat/EnvΔV2 group displayed an overall higher reactivity for epitopes within the Env V3 loop throughout the immunization period. Although differences in terms of protection rate were not found between the EnvΔV2 or Tat/EnvΔV2 vaccination groups in this pilot study, vaccination with Tat/EnvΔV2 appeared to accelerate the induction of potentially protective antibody responses to Env. In particular, antibodies to the Env V3 loop, whose levels at pre-challenge correlated with protection, were already higher early in the vaccination schedule in monkeys immunized with Tat/EnvΔV2 as compared to EnvΔV2 alone. Further studies including larger vaccination groups and fewer immunizations with these two vaccine candidates are needed to confirm these findings and to assess whether the Tat/EnvΔV2 vaccine may afford superior protection against infection.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
8
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 2009; 28:285-334. [PMID: 19811313 DOI: 10.1080/08830180903013026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The HIV epidemic continues to represent one of the major problems worldwide, particularly in the Asia and Sub-Saharan regions of the world, with social and economical devastating effects. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals that have access to treatment, it has had a negligible impact on the global epidemic. Hence, the inexorable spreading of the HIV pandemic and the increasing deaths from AIDS, especially in developing countries, underscore the urgency for an effective vaccine against HIV/AIDS. However, the generation of such a vaccine has turned out to be extremely challenging. Here we provide an overview on the rationale for the use of non-structural HIV proteins, such as the Tat protein, alone or in combination with other HIV early and late structural HIV antigens, as novel, promising preventative and therapeutic HIV/AIDS vaccine strategies.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol 2009; 83:11950-8. [PMID: 19726509 DOI: 10.1128/jvi.01406-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZC's primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZC's primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2'-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZC's effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription.
Collapse
|
10
|
Gryseels B, Zumla A, Troye-Blomberg M, Kieny MP, Quaglio G, Holtel A, Laang H, Romaris M, De Magistris MT, Nuez AN, Olesen OF, Ghalouci R, Lönnroth A. European Union conference on poverty-related diseases research. THE LANCET. INFECTIOUS DISEASES 2009; 9:334-7. [PMID: 19467472 DOI: 10.1016/s1473-3099(09)70129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. Int Rev Immunol 2009. [DOI: 10.1080/08830180903013026 10.1080/08830180903013026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|