1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Padilla F, Foley J, Timbie K, Bullock TNJ, Sheybani ND. Guidelines for immunological analyses following focused ultrasound treatment. J Immunother Cancer 2023; 11:e007455. [PMID: 38007236 PMCID: PMC10679984 DOI: 10.1136/jitc-2023-007455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 11/27/2023] Open
Abstract
Focused ultrasound (FUS) is a powerful emerging tool for non-invasive, non-ionizing targeted destruction of tumors. The last two decades have seen a growing body of preclinical and clinical literature supporting the capacity of FUS to increase nascent immune responses to tumors and to potentiate cancer immunotherapies (e.g. checkpoint inhibitors) through a variety of means, including immune modulation and drug delivery. With the rapid acceleration of this field and a multitude of FUS immunotherapy clinical trials having now been deployed worldwide, there is a need to streamline and standardize the methodology for immunological analyses field-wide. Recently, the Focused Ultrasound Foundation and Cancer Research Institute partnered to convene a group of over 85 leaders to discuss the nexus of FUS and immuno-oncology. The guidelines documented herein were assembled in response to recommendations that emerged from this discussion, emphasizing the urgent need for heightened accessibility of immune analysis methods and standardized protocols unique to the field. These guidelines are designated for existing stakeholders in the FUS immuno-oncology domain or those newly entering the field, to provide guidance on collection, storage, and immunological profiling of tissue or blood specimens in the context of FUS immunotherapy studies, and additionally offer templates for standardized deployment of these methods based on collective experience gained within the field to date. These guidelines are tumor-agnostic and provide evidence-based, consensus-based recommendations for both preclinical and clinical immune analysis of tissue and blood specimens.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jessica Foley
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | - Kelsie Timbie
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| | | | - Natasha D Sheybani
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
- Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Khokhlova TD, Wang YN, Son H, Totten S, Whang S, Ha Hwang J. Chronic effects of pulsed high intensity focused ultrasound aided delivery of gemcitabine in a mouse model of pancreatic cancer. ULTRASONICS 2023; 132:106993. [PMID: 37099937 PMCID: PMC10225358 DOI: 10.1016/j.ultras.2023.106993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/29/2023]
Abstract
Pulsed high intensity focused ultrasound (pHIFU) is a non-invasive method that allows to permeabilize pancreatic tumors through inertial cavitation and thereby increase the concentration of systemically administered drug. In this study the tolerability of weekly pHIFU-aided administrations of gemcitabine (gem) and their influence on tumor progression and immune microenvironment were investigated in genetically engineered KrasLSL.G12D/þ; p53R172H/þ; PdxCretg/þ (KPC) mouse model of spontaneously occurring pancreatic tumors. KPC mice were enrolled in the study when the tumor size reached 4-6 mm and treated once a week with either ultrasound-guided pHIFU (1.5 MHz transducer, 1 ms pulses, 1% duty cycle, peak negative pressure 16.5 MPa) followed by administration of gem (n = 9), gem only (n = 5) or no treatment (n = 8). Tumor progression was followed by ultrasound imaging until the study endpoint (tumor size reaching 1 cm), whereupon the excised tumors were analyzed by histology, immunohistochemistry (IHC) and gene expression profiling (Nanostring PanCancer Immune Profiling panel). The pHIFU + gem treatments were well tolerated; the pHIFU-treated region of the tumor turned hypoechoic immediately following treatment in all mice, and this effect persisted throughout the observation period (2-5 weeks) and corresponded to areas of cell death, according to histology and IHC. Enhanced labeling by Granzyme-B was observed within and adjacent to the pHIFU treated area, but not in the non-treated tumor tissue; no difference in CD8 + staining was observed between the treatment groups. Gene expression analysis showed that the pHIFU + gem combination treatment lead to significant downregulation of 162 genes related to immunosuppression, tumorigenesis, and chemoresistance vs gem only treatment.
Collapse
Affiliation(s)
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - Helena Son
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Totten
- Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| | - Stella Whang
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joo Ha Hwang
- Department of Medicine, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
4
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
5
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
6
|
Lambin T, Lafon C, Drainville RA, Pioche M, Prat F. Locoregional therapies and their effects on the tumoral microenvironment of pancreatic ductal adenocarcinoma. World J Gastroenterol 2022; 28:1288-1303. [PMID: 35645539 PMCID: PMC9099187 DOI: 10.3748/wjg.v28.i13.1288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of death from cancer by 2030. Despite intensive research in the field of therapeutics, the 5-year overall survival is approximately 8%, with only 20% of patients eligible for surgery at the time of diagnosis. The tumoral microenvironment (TME) of the PDAC is one of the main causes for resistance to antitumoral treatments due to the presence of tumor vasculature, stroma, and a modified immune response. The TME of PDAC is characterized by high stiffness due to fibrosis, with hypo microvascular perfusion, along with an immunosuppressive environment that constitutes a barrier to effective antitumoral treatment. While systemic therapies often produce severe side effects that can alter patients' quality of life, locoregional therapies have gained attention since their action is localized to the pancreas and can thus alleviate some of the barriers to effective antitumoral treatment due to their physical effects. Local hyperthermia using radiofrequency ablation and radiation therapy - most commonly using a local high single dose - are the two main modalities holding promise for clinical efficacy. Recently, irreversible electroporation and focused ultrasound-derived cavitation have gained increasing attention. To date, most of the data are limited to preclinical studies, but ongoing clinical trials may help better define the role of these locoregional therapies in the management of PDAC patients.
Collapse
Affiliation(s)
- Thomas Lambin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon 69003, France
- Department of Gastroenterology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon 69008, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon 69003, France
| | | | - Mathieu Pioche
- Department of Gastroenterology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon 69008, France
| | - Frédéric Prat
- Service d’Endoscopie Digestive, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy 92110, France
- INSERM U1016, Institut Cochin, Université de Paris, Paris 75014, France
| |
Collapse
|
7
|
Bao L, Sun K, Zhang X. PANX1 is a potential prognostic biomarker associated with immune infiltration in pancreatic adenocarcinoma: A pan-cancer analysis. Channels (Austin) 2021; 15:680-696. [PMID: 34796785 PMCID: PMC8632293 DOI: 10.1080/19336950.2021.2004758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pannexin 1 (PANX1) channel is a critical ATP-releasing pathway that modulates tumor immunity, progression, and prognosis. However, the roles of PANX1 in different cancers remain unclear. We analyzed the expression of PANX1 in human pan-cancer in the Oncomine and GEPIA2.0 databases. The prognostic value of PANX1 expression was determined using Kaplan-Meier plotter and OncoLnc tools. The correlation between PANX1 and tumor-infiltrating immune cells was investigated using the TIMER 2.0. In addition, the relationship between PANX1 and immunomodulators was explored using TISIDB. Finally, gene set enrichment analysis (GSEA) was performed utilizing LinkedOmics. The results indicated that PANX1 was overexpressed in most cancers compared to normal tissues. The high expression of PANX1 was associated with poor prognosis in multiple tumors, especially in pancreatic adenocarcinoma (PAAD). In addition, PANX1 was correlated with a variety of immunomodulators, such as CD274, IL10, CD276, IL2RA, TAP1, and TAP2. PANX1 expression level was significantly related to infiltration of multiple immune cells in many cancers, including cancer associated fibroblast, macrophage, and neutrophil cells. Further analysis revealed that PANX1 was significantly associated with T cells CD8+ (rho = 0.524, P = 1.94e-13) and Myeloid dendritic cell (rho = 0.564, P = 9.45e-16). GSEA results showed that PANX1 was closely associated with leukocyte cell-cell adhesion, endoplasmic reticulum lumen, ECM-receptor interaction, and Focal adhesion pathways in PAAD. PANX1 expression was higher in pan-cancer samples than in normal tissues. The high expression of PANX1 was associated with poor outcome and immune infiltration in multiple cancers, especially in PAAD.
Collapse
Affiliation(s)
- Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| | - Kai Sun
- Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Zubair M, Adams MS, Diederich CJ. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia. Int J Hyperthermia 2021; 38:1188-1204. [PMID: 34376103 DOI: 10.1080/02656736.2021.1936216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the design of an endoluminal deployable ultrasound applicator for delivering volumetric hyperthermia to deep tissue sites as a possible adjunct to radiation and chemotherapy. METHOD This study considers an ultrasound applicator consisting of two tubular transducers situated at the end of a catheter assembly, encased within a distensible conical shaped balloon-based reflector that redirects acoustic energy distally into the tissue. The applicator assembly can be inserted endoluminally or laparoscopically in a compact form and expanded after delivery to the target site. Comprehensive acoustic and biothermal simulations and parametric studies were employed in generalized 3D and patient-specific pancreatic head and body tumor models to characterize the acoustic performance and evaluate heating capabilities of the applicator by investigating the device at a range of operating frequencies, tissue acoustic and thermal properties, transducer configurations, power modulation, applicator positioning, and by analyzing the resultant 40, 41, and 43 °C isothermal volumes and penetration depth of the heating volume. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. RESULTS Parametric studies demonstrated the frequency selection to control volume and depth of therapeutic heating from 62 to 22 cm3 and 4 to 2.6 cm as frequency ranges from 1 MHz to 4.7 MHz, respectively. Width of the heating profile tracks closely with the aperture. Water cooling within the reflector balloon was effective in controlling temperature to 37 °C maximum within the luminal wall. Patient-specific studies indicated that applicators with extended OD in the range of 3.6-6.2 cm with 0.5-1 cm long and 1 cm OD transducers can heat volumes of 1.1-7 cm3, 3-26 cm3, and 3.3-37.4 cm3 of pancreatic body and head tumors above 43, 41, and 40 °C, respectively. CONCLUSION In silico studies demonstrated the feasibility of combining endoluminal ultrasound with an integrated expandable balloon reflector for delivering volumetric hyperthermia in regions adjacent to body lumens and cavities.
Collapse
Affiliation(s)
- Muhammad Zubair
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew S Adams
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris J Diederich
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng 2021; 49:1975-1991. [PMID: 34374945 DOI: 10.1007/s10439-021-02833-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) is an emerging and increasingly useful modality in the treatment of cancer and other diseases. Although traditional use of ultrasound at lower frequencies has primarily been for diagnostic imaging purposes, the development of HIFU has allowed this particular modality to expand into therapeutic use. This non-invasive and acoustic method involves the use of a piezoelectric transducer to deliver high-energy pulses in a spatially coordinated manner, while minimizing damage to tissue outside the target area. This review describes the history of the development of diagnostic and therapeutic ultrasound and explores the biomedical applications utilizing HIFU technology including thermally ablative treatment, therapeutic delivery mechanisms, and neuromodulatory phenomena. The application of HIFU across various tumor types in multiple organ systems is explored in depth, with particular attention to successful models of HIFU in the treatment of various medical conditions. Basic mechanisms, preclinical models, previous clinical use, and ongoing clinical trials are comparatively discussed. Recent advances in HIFU across multiple medical fields reveal the growing importance of this biomedical technology for the care of patients and for the development of possible pathways for the future use of HIFU as a commonplace treatment modality.
Collapse
|
10
|
Wu M, Song Z, Zhang S, Dan Q, Tang C, Peng C, Liang Y, Zhang L, Wang H, Li Y. Local Tumor Ischemia-Reperfusion Mediated By Ultrasound-Targeted Microbubble Destruction Enhances The Anti-Tumor Efficacy Of Doxorubicin Chemotherapy. Cancer Manag Res 2019; 11:9387-9395. [PMID: 31807068 PMCID: PMC6842279 DOI: 10.2147/cmar.s225607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Background Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a promising noninvasive technique to change the tumor circulation, thus providing a potential method to increase reactive oxygen species (ROS) levels in tumors by inducing tumor tissue ischemia-reperfusion (IR). In this study, we investigated the feasibility of local tumor IR through UTMD to enhance the anti-tumor efficacy of doxorubicin (DOX) chemotherapy. Methods UTMD was used to induce local tumor IR. After the major blood supply of the tumor was restored, DOX was intravenously injected into the tumor-bearing mice. The superoxide dismutase (SOD) and catalase (CAT) activity and ROS levels were examined, and the anti-tumor efficacy was evaluated. Results UTMD blocked the circulation to the tumor for 30 mins. Slow reperfusion began to occur after 30 mins, and major blood supply was restored after 1 hr. The blood perfusion of the tumor completely recovered at 2 hrs. The activity of SOD in the tumors was significantly decreased at 2 hrs and 1 day after IR treatment with or without DOX treatment. The CAT activity showed no obvious changes at 2 hrs after IR treatment, whereas a significant decrease was found after 1 day in both the IR and DOX/IR groups. Moreover, higher levels of ROS were produced in the IR group and IR/DOX group. In vivo anti-tumor study indicated that the local tumor IR strategy may significantly enhance the anti-tumor efficacy of DOX chemotherapy. Conclusion UTMD provides a novel, simple and non-invasive technique for tumor IR. In combination with chemotherapy, UTMD may have high great potential to improve the anti-tumor efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Manxiang Wu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuqing Song
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Shiyu Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qing Dan
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Caiyun Tang
- Pharmaceutical Analysis Department, College of Pharmacy, Jiamusi University, Jiamusi, People's Republic of China
| | - Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, People's Republic of China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Hu X, Ke G, Jang SRJ. Modeling Pancreatic Cancer Dynamics with Immunotherapy. Bull Math Biol 2019; 81:1885-1915. [PMID: 30843136 DOI: 10.1007/s11538-019-00591-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
We develop a mathematical model of pancreatic cancer that includes pancreatic cancer cells, pancreatic stellate cells, effector cells and tumor-promoting and tumor-suppressing cytokines to investigate the effects of immunotherapies on patient survival. The model is first validated using the survival data of two clinical trials. Local sensitivity analysis of the parameters indicates there exists a critical activation rate of pro-tumor cytokines beyond which the cancer can be eradicated if four adoptive transfers of immune cells are applied. Optimal control theory is explored as a potential tool for searching the best adoptive cellular immunotherapies. Combined immunotherapies between adoptive ex vivo expanded immune cells and TGF-[Formula: see text] inhibition by siRNA treatments are investigated. This study concludes that mono-immunotherapy is unlikely to control the pancreatic cancer and combined immunotherapies between anti-TGF-[Formula: see text] and adoptive transfers of immune cells can prolong patient survival. We show through numerical explorations that how these two types of immunotherapies are scheduled is important to survival. Applying TGF-[Formula: see text] inhibition first followed by adoptive immune cell transfers can yield better survival outcomes.
Collapse
Affiliation(s)
- Xiaochuan Hu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.,Department of Mathematics and Statistics, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Guoyi Ke
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.,Department of Mathematics and Physical Sciences, Louisiana State University of Alexandria, Alexandria, LA, 71302, USA
| | - Sophia R-J Jang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.
| |
Collapse
|
12
|
Williams JC, Bailey MR, Cleveland RO. Tailoring acoustics and devices for gene therapy: Comment on 'Shock-wave induced permeabilization of mammalian cells' by Lopez-Marin et al. Phys Life Rev 2018; 26-27:47-48. [PMID: 30001948 DOI: 10.1016/j.plrev.2018.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Robin O Cleveland
- Oxford University, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
13
|
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:155-172. [PMID: 30881202 PMCID: PMC6420022 DOI: 10.1016/j.cej.2018.01.060] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
At present, ultrasound radiation is broadly employed in medicine for both diagnostic and therapeutic purposes at various frequencies and intensities. In this review article, we focus on therapeutically-active nanoparticles (NPs) when stimulated by ultrasound. We first introduce the different ultrasound-based therapies with special attention to the techniques involved in the oncological field, then we summarize the different NPs used, ranging from soft materials, like liposomes or micro/nano-bubbles, to metal and metal oxide NPs. We therefore focus on the sonodynamic therapy and on the possible working mechanisms under debate of NPs-assisted sonodynamic treatments. We support the idea that various, complex and synergistics physical-chemical processes take place during acoustic cavitation and NP activation. Different mechanisms are therefore responsible for the final cancer cell death and strongly depends not only on the type and structure of NPs or nanocarriers, but also on the way they interact with the ultrasonic pressure waves. We conclude with a brief overview of the clinical applications of the various ultrasound therapies and the related use of NPs-assisted ultrasound in clinics, showing that this very innovative and promising approach is however still at its infancy in the clinical cancer treatment.
Collapse
Affiliation(s)
- Giancarlo Canavese
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - Andrea Ancona
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Luisa Racca
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Bianca Dumontel
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Federica Barbaresco
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Center for Sustainable Future Technologies CSFT@Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| |
Collapse
|