1
|
Keshavarzi M, Naraki K, Razavi BM, Hosseinzadeh H. A narrative review and new insights into the protective effects of taurine against drug side effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03331-0. [PMID: 39141023 DOI: 10.1007/s00210-024-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1β and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Muhammed TM, Jalil AT, Taher WM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Effects of Apigenin in the Treatment of Diabetic Nephropathy: A Systematic Review of Non-clinical Studies. Mini Rev Med Chem 2024; 24:341-354. [PMID: 38282447 DOI: 10.2174/1389557523666230811092423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Department of Biotechnology, College of Applied Sciences, University of Fallujah, Al-anbar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Waam Mohammed Taher
- National University of Science and Technology, Thi Qar University, Dhi Qar, Iraq
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Antioquia, 4440555, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cvenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Ma J, Yang Z, Jia S, Yang R. A systematic review of preclinical studies on the taurine role during diabetic nephropathy: focused on anti-oxidative, anti-inflammation, and anti-apoptotic effects. Toxicol Mech Methods 2022; 32:420-430. [PMID: 34933643 DOI: 10.1080/15376516.2021.2021579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy is one of the most important and growing diseases globally and the leading cause of cardiovascular mortality in these patients. Taurine is an amino acid that has pleiotropic protective properties on some diseases. This study aimed to investigate the potential role of taurine in the treatment of diabetes-induced nephropathy. To achieve the aim of the present study, a comprehensive systematic search based on PRISMA guidelines has been conducted up to August 2021. A total of 382 articles were found in the electronic databases based on search keywords. After doing the screening, 14 articles were included in the present systematic review. The dated demonstrated elevation of oxidative stress, inflammatory and apoptotic pathways, and changes in other molecules' function plays an essential role in diabetes-induced renal tissue damage. Due to its multiple protective effects, taurine significantly prevented the activation of the pathways mentioned above and altered the function of molecules involved in these pathways, resulting in alleviating diabetic nephropathy. According to the obtained results, it was found that taurine can mitigate diabetes-induced nephropathy, mainly through its anti-oxidant activity, which is an essential factor in activating inflammation and apoptosis pathways.
Collapse
Affiliation(s)
- Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rui Yang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Delfita R, Dahelmi D, Tjong D, Suhatri S. Effect of Enhydra fluctuans on Kidney Function in Alloxan-induced Diabetic Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: The aim of this study was to explore the effect of n-hexane fraction of Enhydra fluctuans aerial on kidney function in alloxan induced diabetic rats.
METHODS: Five groups of diabetic Wistar rats were studied: Group 1 was given 0.5% Na-CMC (G0), group 2 was given glibenclamide 0.45 mg/kg (G1), groups 3, 4, and 5 were given a dose of n-hexane fraction 57.03, 114.06, and 171.09 mg/kg respectively. The experiment was completed in 21 days. Blood glucose was estimated on day 0 and day 21 of treatment. Histology of kidney, creatinine, and blood urea nitrogen (BUN) was examined. ANOVA was used to evaluate quantitative data, which was then followed by Duncan's new multiple range test (p < 0.05).
RESULTS: Our results demonstrate that n-hexane fraction dosages of 57.03 mg/kg and 114,06 mg/kg significantly improved blood glucose profile, BUN, and creatinine in diabetic rats. Moreover, the dosage of 57.03 mg/kg is effective to counteract necrosis and fibrosis of kidney cells.
CONCLUSION: Our findings revealed that the administration of the n-hexane fraction of E. fluctuans aerial improved the kidney function of diabetic rats, especially at the dosage of 57.03 mg/kg. Therefore, E. fluctuans can be relied upon to be a drug to prevent the development of diabetes mellitus and diabetic nephropathy.
Collapse
|
5
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, Spandidos DA, Kyriakopoulos AM, Zoumpourlis V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). MEDICINE INTERNATIONAL 2021; 1:3. [PMID: 36699147 PMCID: PMC9855276 DOI: 10.3892/mi.2021.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.
Collapse
Affiliation(s)
- Stella Baliou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Ioannis Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
6
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
7
|
Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients 2019; 11:nu11092212. [PMID: 31540245 PMCID: PMC6770760 DOI: 10.3390/nu11092212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Taurine is a sulfur containing nutrient that has been shown to protect against oxidative stress, which has been implicated in the pathophysiology leading to late graft failure after renal transplantation. We prospectively investigated whether high urinary taurine excretion, reflecting high taurine intake, is associated with low risk for development of late graft failure in renal transplant recipients (RTR). Urinary taurine excretion was measured in a longitudinal cohort of 678 stable RTR. Prospective associations were assessed using Cox regression analyses. Graft failure was defined as the start of dialysis or re-transplantation. In RTR (58% male, 53 ± 13 years old, estimated glomerular filtration rate (eGFR) 45 ± 19 mL/min/1.73 m2), urinary taurine excretion (533 (210–946) µmol/24 h) was significantly associated with serum free sulfhydryl groups (β = 0.126; P = 0.001). During median follow-up for 5.3 (4.5–6.0) years, 83 (12%) patients developed graft failure. In Cox regression analyses, urinary taurine excretion was inversely associated with graft failure (hazard ratio: 0.74 (0.67–0.82); P < 0.001). This association remained significant independent of potential confounders. High urinary taurine excretion is associated with low risk of late graft failure in RTR. Therefore, increasing taurine intake may potentially support graft survival in RTR. Further studies are warranted to determine the underlying mechanisms and the potential of taurine supplementation.
Collapse
|
8
|
Dobberthien BJ, Volotovskyy V, Tessier AG, Yahya A. Magnetic resonance spectroscopy of rat kidney
in vivo
at 9.4 T. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Pandya K, Lau-Cam CA. Taurine Improves the Actions of Metformin and Lovastatin on Plasma Markers of Carbohydrate and Lipid Dysfunction of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:87-99. [DOI: 10.1007/978-981-13-8023-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Pandya K, Clark GJ, Lau-Cam CA. Investigation of the Role of a Supplementation with Taurine on the Effects of Hypoglycemic-Hypotensive Therapy Against Diabetes-Induced Nephrotoxicity in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:371-400. [PMID: 28849470 DOI: 10.1007/978-94-024-1079-2_32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This study has examined the role of supplementing a treatment of diabetic rats with captopril (CAP), metformin (MET) or CAP-MET with the antioxidant amino acid taurine (TAU) on biochemical indices of diabetes-induced metabolic changes, oxidative stress and nephropathy. To this end, groups of 6 male Sprague-Dawley rats (250-375 g) were made diabetic with a single, 60 mg/kg, intraperitoneal dose of streptozotocin (STZ) in 10 mM citrate buffer pH 4.5 and, after 14 days, treated daily for up to 42 days with either a single oral dose of CAP (0.15 mM/kg), MET (2.4 mM/kg) or TAU (2.4 mM/kg), or with a binary or tertiary combination of these agents. Rats receiving only 10 mM citrate buffer pH 4.5 or only STZ served as negative and positive controls, respectively. All rats were sacrificed by decapitation on day 57 and their blood and kidneys collected. In addition, a 24 h urine sample was collected starting on day 56. Compared to normal rats, untreated diabetic ones exhibited frank hyperglycemia (+313%), hypoinsulinemia (-76%) and elevation of the glycated hemoglobin value (HbA1c, +207%). Also they showed increased plasma levels of Na+ (+35%), K+ (+56%), creatinine (+232%), urea nitrogen (+158%), total protein (-53%) and transforming growth factor-β1 (TGF-β1, 12.4-fold) values. These changes were accompanied by increases in the renal levels of malondialdehyde (MDA, +42%), by decreases in the renal glutathione redox state (-71%), and activities of catalase (-70%), glutathione peroxidase (-71%) and superoxide dismutase (-85%), and by moderate decreases of the urine Na+ (-33%) and K+ (-39%) values. Following monotherapy, MET generally showed a greater attenuating effect than CAP or TAU on the changes in circulating glucose, insulin and HbA1c levels, urine total protein, and renal SOD activity; and CAP appeared more potent than TAU and MET, in that order, in antagonizing the changes in plasma creatinine and urea nitrogen levels. On the other hand, TAU generally provided a greater protection against changes in glutathione redox state and in CAT and GPx activities, with other actions falling in potency between those of CAP and MET. Adding TAU to a treatment with CAP, but not to one with MET, led to an increase in protective action relative to a treatment with drug alone. On the other hand, the actions of CAP-MET, which were about equipotent with those of MET, became enhanced in the presence of TAU, particularly against the changes of the glutathione redox state and activities of antioxidant enzymes. In short, the present results suggest that the addition of TAU to a treatment of diabetes with CAP or CAP-MET, and sometimes to one with MET, will lead to a gain in protective potency against changes in indices of glucose metabolism and of renal functional impairment and oxidative stress.
Collapse
Affiliation(s)
- Kashyap Pandya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - George J Clark
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | - Cesar A Lau-Cam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
11
|
Dietary zinc reduces endoplasmic reticulum stress and autophagy to protect against diabetic renal damage in streptozotocin-induced diabetic rats. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0681-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
12
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|
13
|
Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury. Biochem Biophys Res Commun 2017; 489:312-318. [DOI: 10.1016/j.bbrc.2017.05.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 01/04/2023]
|
14
|
Long Y, Dong X, Yuan Y, Huang J, Song J, Sun Y, Lu Z, Yang L, Yu W. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress. J Clin Biochem Nutr 2015; 57:50-9. [PMID: 26236101 PMCID: PMC4512893 DOI: 10.3164/jcbn.14-147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPCc (14:0), glycine and succinic acid and decreased levels of l-valine, PCb (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.
Collapse
Affiliation(s)
- Yue Long
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China ; Department of Anesthesiology, 163th Hospital of PLA, Hunan 410003, China
| | - Xin Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yawei Yuan
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jinqiang Huang
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jiangang Song
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumin Sun
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhijie Lu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
15
|
Bownik A, Stępniewska Z, Skowroński T. Effects of ectoine on behavioural, physiological and biochemical parameters of Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:2-10. [PMID: 25460046 DOI: 10.1016/j.cbpc.2014.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Ectoine (ECT) is a compatible solute produced by soil, marine and freshwater bacteria in response to stressful factors. The purpose of our study was to determine the possible toxic influence of ECT on Daphnia magna. We determined the following endpoints: survival rate during exposure and recovery, swimming performance, heart rate, thoracic limb movement determined by image analysis, haemoglobin level by ELISA assay, catalase and nitric oxide species (NOx) by spectrophotometric methods. The results showed 80% survival of daphnids exposed to 50mg/L of ECT after 24h and 10% after 90h, however lower concentrations of ECT were well tolerated. A concentration-dependent reduction of swimming velocity was noted at 24 and 48h of the exposure. ECT (at 2.5 and 4mg/L) induced an increase of heart rate and thoracic limb movement (at 2.5, 4 and 20mg/L) after 24h. After 10h of the exposure to ECT daphnids showed a concentration-dependent increase of haemoglobin level synthesized and accumulated in the epipodite epithelia. After 24h we noted a concentration-dependent decrease of haemoglobin level and its lowest value was found after 48h of the exposure. ECT at a concentration of 20 and 25mg/L slightly stimulated catalase activity after 24h. NOx level was also increased after 10h of the exposure to 20 and 25mg/L of ECT reaching maximal activity after 24h. Our results suggest that ECT possesses some modulatory potential on the behaviour, physiology and biochemical parameters in daphnids.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland.
| | - Zofia Stępniewska
- Department of Biochemistry Environmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| | - Tadeusz Skowroński
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| |
Collapse
|
16
|
Han X, Ito T, Azuma J, Schaffer SW, Chesney RW. The quest for an animal model of diabetic nephropathy and the role of taurine deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:217-26. [PMID: 25833501 DOI: 10.1007/978-3-319-15126-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaobin Han
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA,
| | | | | | | | | |
Collapse
|
17
|
Sirdah MM. Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation. Diabetes Metab Syndr 2015; 9:55-64. [PMID: 25366895 DOI: 10.1016/j.dsx.2014.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Taurine, 2-amino ethanesulfonic acid, is a conditionally essential β amino acid which is not utilized in protein synthesis. Taurine is one of the most abundant free amino acids in mammals tissues and is one of the three well-known sulfur-containing amino acids; the others are methionine and cysteine which are considered as the precursors for taurine synthesis. Different scientific studies emphasize on the cytoprotective properties of taurine which included antioxidation, antiapoptosis, membrane stabilization, osmoregulation, and neurotransmission. Protective and therapeutic ameliorations of oxidative stress-induced pathologies were also attributed to taurine both in experimental and human models. Data demonstrating the beneficial effectiveness of taurine against type 1 and type 2 diabetes mellitus and their complications are growing and providing a better understanding of the underlying molecular mechanisms. Although the clinical studies are limited compared to the experimental ones, the present updated systematic review of the literature is set up to provide experimental and clinical evidences regarding the effectiveness of taurine in the context of diabetes mellitus and its complications. Gathering these scientific effects of taurine on diabetes mellitus could provide the physicians and specially the endocrinologists with a comprehensive overview on possible trends in the prevention and management of the disease and its complications through antioxidant supplementation.
Collapse
|
18
|
Koh JH, Lee ES, Hyun M, Kim HM, Choi YJ, Lee EY, Yadav D, Chung CH. Taurine alleviates the progression of diabetic nephropathy in type 2 diabetic rat model. Int J Endocrinol 2014; 2014:397307. [PMID: 24707287 PMCID: PMC3953422 DOI: 10.1155/2014/397307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023] Open
Abstract
The overexpression of vascular endothelial growth factor (VEGF) is known to be involved in the pathogenesis of diabetic nephropathy. In this study, the protective effects of taurine on diabetic nephropathy along with its underlying mechanism were investigated. Experimental animals were divided into three groups: LETO rats as normal group (n = 10), OLETF rats as diabetic control group (n = 10), and OLETF rats treated with taurine group (n = 10). We treated taurine (200 mg/kg/day) for 20 weeks and treated high glucose (HG, 30 mM) with or without taurine (30 mM) in mouse cultured podocyte. After taurine treatment, blood glucose level was decreased and insulin secretion was increased. Taurine significantly reduced albuminuria and ACR. Also it decreased glomerular volume, GBM thickness and increased open slit pore density through decreased VEGF and increased nephrin mRNA expressions in renal cortex. The antioxidant effects of taurine were confirmed by the reduction of urine MDA in taurine treated diabetic group. Also reactive oxygen species (ROS) levels were decreased in HG condition with taurine treated podocytes compared to without taurine. These results indicate that taurine lowers glucose level via increased insulin secretion and ameliorates the progression of diabetic nephropathy through antifibrotic and antioxidant effects in type 2 diabetes rat model.
Collapse
Affiliation(s)
- Jang Hyun Koh
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-740, Republic of Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Miri Hyun
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Yoon Jung Choi
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 110-746, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Dhananjay Yadav
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
- *Choon Hee Chung:
| |
Collapse
|
19
|
Pandya KG, Budhram R, Clark G, Lau-Cam CA. Comparative Evaluation of Taurine and Thiotaurine as Protectants Against Diabetes-Induced Nephropathy in a Rat Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:371-94. [DOI: 10.1007/978-1-4614-6130-2_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Imae M, Asano T, Murakami S. Potential role of taurine in the prevention of diabetes and metabolic syndrome. Amino Acids 2012; 46:81-8. [DOI: 10.1007/s00726-012-1434-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
21
|
Han X, Chesney RW. The role of taurine in renal disorders. Amino Acids 2012; 43:2249-63. [DOI: 10.1007/s00726-012-1314-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/24/2012] [Indexed: 01/10/2023]
|
22
|
LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther 2012; 25:451-9. [PMID: 21993919 DOI: 10.1007/s10557-011-6342-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a common metabolic disease characterized by a state of oxidative stress, inflammation and endothelial dysfunction. This malady can lead to a number of complications such as ischemic heart disease, nephropathy, neuropathy, retinopathy and impaired wound healing. The etiology of diabetic complications is multifactorial, and is closely associated with oxidative stress and inflammation. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for oxidized low density lipoprotein (ox-LDL), plays critical roles in multiple signal transduction pathways and is involved in the process of oxidative stress and inflammation. Recent studies provide important insights into the roles of LOX-1 in the development and progression of diabetic vasculopathy which is the underlying mechanism of diabetic complications. In this review, we summarize mechanistic studies, mainly related to LOX-1, on the development and progression of diabetes mellitus and its cardiovascular complications.
Collapse
|
23
|
Application of ex vivo 1H NMR metabonomics to the characterization and possible detection of renal cell carcinoma metastases. J Cancer Res Clin Oncol 2012; 138:753-61. [DOI: 10.1007/s00432-011-1134-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
24
|
Zhao L, Gao H, Lian F, Liu X, Zhao Y, Lin D. 1H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin. Am J Physiol Renal Physiol 2011; 300:F947-56. [DOI: 10.1152/ajprenal.00551.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Elucidation of the metabolic profiling in diabetic nephropathy (DN) rats is of great assistance for understanding the pathogenesis of DN. In this study, 1H-nuclear magnetic resonance (NMR)-based metabonomics combined with HPLC measurements was used to quantitatively analyze the metabolic changes in urine and kidney extracts from diabetic 2-wk and 8-wk rats induced by streptozotocin (STZ). Pattern recognition analysis of either urine or kidney extracts indicated that the two diabetic groups were separated obviously from the control group, suggesting that the metabolic profiles of the diabetic groups were markedly different from the control. The diabetic 8-wk rats showed lower levels of creatine, dimethylamine, and higher levels of ascorbate, succinate, lactate, citrate, allantoin, 2-ketoglutarate, and 3-hydrobutyrate (3-HB) in the urine samples. Moreover, the diabetic 8-wk rats displayed lower levels of succinate, creatine, myo-inositol, alanine, lactate, and ATP, and higher levels of 3-HB and glucose in the kidney extracts. The observed metabolic changes imply the enhanced pathways of either lipid or ketone body synthesis and decreased pathways of either tricarboxylic acid cycle or glycolysis in DN rats compared with the control. Our results suggest that the energy metabolic changes are associated with the pathogenic process of DN.
Collapse
Affiliation(s)
- Liangcai Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai
- The First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Hongchang Gao
- School of Pharmacy, Wenzhou Medical College, Wenzhou; and
| | - Fulin Lian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai
| | - Xia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai
| | - Yongxiang Zhao
- The First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Donghai Lin
- The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai
| |
Collapse
|
25
|
Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 2010; 30:49-59. [PMID: 20718759 DOI: 10.1111/j.1755-5922.2010.00218.x] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes has dramatically increased worldwide due to the vast increase in the obesity rate. Diabetic nephropathy is one of the major complications of type 1 and type 2 diabetes and it is currently the leading cause of end-stage renal disease. Hyperglycemia is the driving force for the development of diabetic nephropathy. It is well known that hyperglycemia increases the production of free radicals resulting in oxidative stress. While increases in oxidative stress have been shown to contribute to the development and progression of diabetic nephropathy, the mechanisms by which this occurs are still being investigated. Historically, diabetes was not thought to be an immune disease; however, there is increasing evidence supporting a role for inflammation in type 1 and type 2 diabetes. Inflammatory cells, cytokines, and profibrotic growth factors including transforming growth factor-β (TGF-β), monocyte chemoattractant protein-1 (MCP-1), connective tissue growth factor (CTGF), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-18 (IL-18), and cell adhesion molecules (CAMs) have all been implicated in the pathogenesis of diabetic nephropathy via increased vascular inflammation and fibrosis. The stimulus for the increase in inflammation in diabetes is still under investigation; however, reactive oxygen species are a primary candidate. Thus, targeting oxidative stress-inflammatory cytokine signaling could improve therapeutic options for diabetic nephropathy. The current review will focus on understanding the relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy to help elucidate the question of which comes first in the progression of diabetic nephropathy, oxidative stress, or inflammation.
Collapse
Affiliation(s)
- Ahmed A Elmarakby
- Department of Oral Biology, Medical College of Georgia, Augusta, GA, USA Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta, GA, USA Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | | |
Collapse
|
26
|
|
27
|
Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis. ACTA ACUST UNITED AC 2009; 37:211-20. [PMID: 19513707 DOI: 10.1007/s00240-009-0197-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Hyperoxaluria and crystal deposition induce oxidative stress (OS) and renal epithelial cells injury, both mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are considered as the main sources of reactive oxygen species (ROS). Taurine is known to have antioxidant activity and shows renoprotective effect. We investigate the effect of taurine treatment on renal protection, and the putative source of ROS, in a rat model of calcium oxalate nephrolithiasis. Rats were administered with 2.5% (V/V) ethylene glycol + 2.5% (W/V) ammonium chloride (4 ml/day), with restriction on intake of drinking water (20 ml/day) for 4 weeks. Simultaneous treatment with taurine (2% W/W, mixed with the chow) was performed. At the end of the study, indexes of OS and renal injury were assessed. Renal tubular ultrastructure changes were analyzed under transmission electron microscopy. Crystal deposition in kidney was scored under light microscopy. Angiotensin II in kidney homogenates was determined by radioimmunoassay. Expression of NADPH oxidase subunits p47phox and Nox-4 mRNAs in kidney was evaluated by real time-polymerase chain reaction. The data showed that oxidative injury of the kidney occurred in nephrolithiasis-induced rats. Hyperplasia of mitochondria developed in renal tubular epithelium. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mitochondria decreased and the mitochondrial membrane showed oxidative injury. Taurine treatment alleviated the oxidative injury of the kidney, improved SOD and GSH-Px activities, as well as the mitochondrial membrane injury, with lesser crystal depositions in the kidney. We could not detect statistical changes in the renal angiotensin II level, and the renal p47phox and Nox-4 mRNAs expression in those rats. The results suggest that mitochondria but not NADPH oxidase may account for the OS and taurine protected kidney from oxidative injury through mitochondrial-linked pathway in this rat model.
Collapse
|