1
|
Zhang NX, Guan C, Li CY, Xu LY, Xin YL, Song Z, Li TY, Yang CY, Zhao L, Che L, Wang YF, Man XF, Xu Y. Formononetin Alleviates Ischemic Acute Kidney Injury by Regulating Macrophage Polarization through KLF6/STAT3 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1487-1505. [PMID: 39169449 DOI: 10.1142/s0192415x24500587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Recent research has indicated that formononetin demonstrates a potent anti-inflammatory effect in various diseases. However, its impact on sterile inflammation kidney injury, specifically acute kidney injury (AKI), remains unclear. In this study, we utilized an ischemia/reperfusion-induced AKI (IRI-AKI) mouse model and bone marrow-derived macrophages (BMDMs) to investigate the effects of formononetin on sterile inflammation of AKI and to explore the underlying mechanism. The administration of formononetin significantly preserved kidney function from injury, as evidenced by lower serum creatinine and blood urea nitrogen levels compared to IRI-AKI mice without treatment. This was further confirmed by less pathological changes in renal tubules and low expression of tubular injury markers such as KIM-1 and NGAL in the formononetin-treated IRI-AKI group. Furthermore, formononetin effectively suppressed the expression of pro-inflammatory cytokines (MCP-1, TNF-α, and IL-1β) and macrophage infiltration into the kidneys of AKI mice. In vitro studies showed that formononetin led to less macrophage polarization towards a pro-inflammatory phenotype in BMDMs stimulated by LPS and IFN-[Formula: see text]. The mechanism involved the KLF6 and p-STAT3 pathway, as overexpression of KLF6 restored pro-inflammatory cytokine levels and pro-inflammatory polarization. Our findings demonstrate that formononetin can significantly improve renal function and reduce inflammation in IRI-AKI, which may be attributed to the inhibition of KLF6/STAT3-mediated macrophage pro-inflammatory polarization. This discovery presents a new promising therapeutic option for the treatment of IRI-AKI.
Collapse
Affiliation(s)
- Ning-Xin Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Guan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Yu Li
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, München, Germany
| | - Ling-Yu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Lu Xin
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuo Song
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tian-Yang Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng-Yu Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Fei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Fei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Liao H, Ma H, Meng H, Kang N, Wang L. Ropinirole suppresses LPS-induced periodontal inflammation by inhibiting the NAT10 in an ac4C-dependent manner. BMC Oral Health 2024; 24:510. [PMID: 38689229 PMCID: PMC11059654 DOI: 10.1186/s12903-024-04250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1β, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.
Collapse
Affiliation(s)
- Haiqing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huabing Ma
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hongying Meng
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Kang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Lufei Wang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases & College and Hospital of Stomatology, Guangxi Medical University, No.10, Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Qiu ML, Yan W, Liu MM. Klf6 aggravates myocardial ischemia/reperfusion injury by activating Acsl4-mediated ferroptosis. Kaohsiung J Med Sci 2023; 39:989-1001. [PMID: 37530646 DOI: 10.1002/kjm2.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 08/03/2023] Open
Abstract
Ferroptosis is closely related to myocardial ischemia/reperfusion (I/R) damage. Kruppel-like factor 6 (Klf6) can aggravate renal I/R injury. We aimed to elucidate the role of Klf6 in myocardial I/R damage as well as its potential mechanism. Myocardial I/R mice model and hypoxia/reoxygenation (H/R)-treated HL-1 cells were established. The levels of Fe2+ , MDA, lipid ROS, and ferroptosis-related proteins were measured for assessing ferroptosis. Infarct area, H&E staining, cardiac function, and cell viability were detected for evaluating myocardial injury. Immunohistochemistry, immunofluorescence, western blot, and RT-qPCR were applied for detecting the levels of related genes. The m6A modification of Klf6, as well as the relationships between Klf6 and Mettl3, Igf2bp2, or Acsl4 promoter, was evaluated using MeRIP, RNA immunoprecipitation, RNA pull-down, chromatin immunoprecipitation, and luciferase reporter assay accordingly.Klf6 protein and mRNA levels, as well as Klf6 m6A modification, were elevated in HL-1 cells subjected to H/R and in the heart tissues from I/R mice. In H/R-challenged HL-1 cells, the binding relationships between Klf6 mRNA and Igf2bp2 or Mettl3 were confirmed; moreover, Igf2bp2 or Mettl3 knockdown decreased the Klf6 level and inhibited Klf6 mRNA stability. Klf6 knockdown restrained H/R-triggered cell viability loss, improved I/R-induced myocardial injury, and inhibited ferroptosis in myocardial I/R damage models. Klf6 directly bound to the Acsl4 promoter and positively regulated its expression. Acsl4 overexpression compromised the Klf6 knockdown-generated protective effect in HL-1 cells.m6A modification-regulated Klf6 aggravated myocardial I/R damage through activating Acsl4-mediated ferroptosis, thereby providing one potential target for the treatment of myocardial I/R.
Collapse
Affiliation(s)
- Ma-Li Qiu
- Attending of Cardiovascular Surgery ICU at the Second Xiangya Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Wei Yan
- Physician of Cardiopulmonary bypass specialty at the Second Xiangya Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Mo-Mu Liu
- Attending of Cardiovascular Surgery ICU at the Second Xiangya Hospital of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Jin Z, Dou M, Peng W, Xiao B, Liu J, Meng W, Liu W. Identification of distinct immune infiltration and potential biomarkers in patients with liver ischemia-reperfusion injury. Life Sci 2023:121726. [PMID: 37105441 DOI: 10.1016/j.lfs.2023.121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
AIMS To identify alterations of specific gene expression, immune infiltration components, and potential biomarkers in liver ischemia-reperfusion injury (IRI) following liver transplantation (LT). MATERIALS AND METHODS GSE23649 and GSE151648 datasets were obtained from the Gene Expression Omnibus (GEO) database. To determine the differentially expressed genes (DEGs), we utilized the R package "limma". We also identify the infiltration of different immune cells through single-sample gene-set enrichment analysis (ssGSEA). Furthermore, we utilized LASSO logistic regression to select feature genes and Spearman's rank correlation analysis to determine the correlation between these genes and infiltrating immune cells. Finally, the significance of these feature genes was confirmed using a mouse model of hepatic IRI. KEY FINDINGS A total of 17 DEGs were acquired, most of which were associated with inflammation, apoptosis, cell proliferation, immune disorders, stress response, and angiogenesis. 28 immune cell types were determined using ssGSEA. 5 feature genes (ADM, KLF6, SERPINE1, SLC20A1, and HBB) were screened using LASSO analysis, but the HBB gene was ultimately excluded due to the lack of statistical significance in the GSE151648 dataset. These 4 feature genes were predominantly related to immune cells. Finally, 15 significantly distinctive types of immune cells between the control and IRI groups were verified. SIGNIFICANCE We unveiled that macrophages, dendritic cells (DCs), neutrophils, CD4 T cells, and other immune cells infiltrated the IRI that occurred after LT. Moreover, we identified ADM, KLF6, SERPINE1, and SLC20A1 as potential biological biomarkers underlying IRI post-transplant, which may improve the diagnosis and prognosis of this condition.
Collapse
Affiliation(s)
- Zhangliu Jin
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shangxi 710000, China
| | - Weihui Peng
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Boen Xiao
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinjin Liu
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wen Meng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Cardiometabolic Medicine of Hunan Province, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wei Liu
- Department of General Surgery, Division of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
5
|
Sun DD, Wu X, Lin SC, Duan SY. Anti-apoptosis and anti-inflammation activity of circ_0097010 downregulation in lipopolysaccharide-stimulated periodontal ligament cells by miR-769-5p/Krüppel like factor 6 axis. J Dent Sci 2023; 18:310-321. [PMID: 36643256 PMCID: PMC9831795 DOI: 10.1016/j.jds.2022.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Periodontitis is a prevalent infectious inflammatory disease. Growing evidence has revealed important roles for circular RNAs (circRNAs) and circRNA sponge activity in periodontitis. Here, we elucidated the precise part of circ_0097010 in periodontitis pathogenesis. Materials and methods Human periodontal ligament cells (hPDLCs) were exposed to lipopolysaccharide (LPS). Cell viability, proliferation and apoptosis were evaluated by CCK-8 assay, EdU incorporation assay and flow cytometry, respectively. Circ_0097010, microRNA (miR)-769-5p and Krüppel like factor 6 (KLF6) were quantified by qRT-PCR and Western blot. Interleukin 6 (IL-6) level, tumor necrosis factor-α (TNF-α) secretion, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were detected by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to confirm the direct relationship between miR-769-5p and circ_0097010 or KLF6. Results Our data showed that LPS repressed cell proliferation and induced cell apoptosis and inflammation in hPDLCs. Circ_0097010 was upregulated in periodontitis samples and LPS-exposed hPDLCs. Downregulation of circ_0097010 exerted anti-apoptosis and anti-inflammation functions in LPS-exposed hPDLCs. Mechanistically, circ_0097010 acted as a miR-769-5p sponge, and reduced abundance of miR-769-5p reversed the anti-apoptosis and anti-inflammation effects of circ_0097010 suppression. KLF6 was a direct miR-769-5p target, and miR-769-5p-mediated inhibition of KLF6 possessed anti-apoptosis and anti-inflammation functions in LPS-induced hPDLCs. Moreover, circ_0097010 controlled KLF6 expression by miR-769-5p. Conclusion These data identify circ_0097010 as a key regulator of LPS-induced inflammation and apoptosis in hPDLCs and highlight a novel mechanism of circ_0097010 regulation through miR-769-5p/KLF6 axis.
Collapse
Affiliation(s)
| | | | | | - Shao-Yu Duan
- Corresponding author. Department of Stomatology, Electric Power Teaching Hospital, Capital Medical University, No.1, Taipingqiao Xili, Fengtai District, Beijing 100073, China.
| |
Collapse
|
6
|
Chen Q, Jia Z, Qu C. Inhibition of KLF6 reduces the inflammation and apoptosis of type II alveolar epithelial cells in acute lung injury. Allergol Immunopathol (Madr) 2022; 50:138-147. [PMID: 36086974 DOI: 10.15586/aei.v50i5.632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 09/08/2023]
Abstract
BACKGROUND The development of acute lung injury (ALI) into a severe stage leads to acute respiratory distress syndrome (ARDS). The morbidity and mortality of ALI and ARDS are very high. Objective: This study is aimed to explore the effect of Krüppel-like factor 6 (KLF6) on lipopolysaccharide (LPS)-induced type II alveolar epithelial cells in ALI by interacting with cysteine-rich angiogenic inducer 61 (CYR61). MATERIAL AND METHODS ALI mice model and LPS-induced type II alveolar epithelial cells were conducted to simulate ALI in vivo and in vitro. The messenger RNA (mRNA) and protein expression of KLF6 in lung tissues were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Pathological changes in lung tissues were observed by hematoxylin and eosin (H&E) staining. The viability and KLF6 expression of A549 cells treated with different concentrations of LPS were detected by cell counting kit-8 (CCK-8) assay, RT-qPCR, and Western blot analysis. After indicated treatment, the viability and apoptosis of A549 cells were analyzed by CCK-8 and TUNEL assays, and the inflammation factors of A549 cells were detected by Enzyme-linked-immunosorbent serologic assay, RT-qPCR, and Western blot analysis. The combination of KLF6 and CYR61 was determined by chromatin immunoprecipitation (ChIP)-PCR and dual-luciferase reporter assay. RESULTS KLF6 expression was increased in lung tissues of ALI mice and LPS-induced A549 cells. Interference with KLF6 improved the viability, reduced the inflammatory damage, and promoted the apoptosis of LPS-induced A549 cells. In addition, KLF6 could bind to CYR61. Interference with KLF6 could decrease CYR61 expression in LPS-induced A549 cells. LPS also enhanced the TLR4/MYD88 signaling pathway, which was reversed by KLF6 interference. The above phenomena in LPS-induced A549 cells transfected with Si-KLF6 could be reversed by overexpression of CYR61. CONCLUSION Inhibition of KLF6 promoted the viability and reduced the inflammation and apoptosis of LPS-induced A549 cells, which was reversed by CYR61.
Collapse
Affiliation(s)
- Qingbin Chen
- Department of Anesthesiology, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Zhen Jia
- Department of Anesthesiology, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Changjing Qu
- Department of Critical Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China;
| |
Collapse
|
7
|
Wang Z, Zhou Z, Zhang Y, Zuo F, Du J, Wang M, Hu M, Sun Y, Wang X, Liu M, Zhang Y, Tang W, Yi F. Diacylglycerol kinase epsilon protects against renal ischemia/reperfusion injury in mice through Krüppel-like factor 15/klotho pathway. Ren Fail 2022; 44:902-913. [PMID: 35616094 PMCID: PMC9154760 DOI: 10.1080/0886022x.2022.2079524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although recent studies have indicated that mutations in the gene encoding diacylglycerol kinase epsilon (DGKE) result in some proteinuria related hereditary kidney diseases, the DGKE expression pattern in the kidney and its contribution to acute kidney injury (AKI) remain unknown. Therefore, the present study was designed to detect the role of DGKE in mice with AKI. DGKE expression was time-dependently altered in the kidneys of mice with renal ischemia/reperfusion injury (IRI). Compared with wild-type (WT) mice, DGKE- overexpressing mice (Rosa26-Dgke+/+) exhibited protective effects against renal IRI, including reduced serum creatinine, blood urea concentration, tubular cell death and inflammatory responses as well as improved morphological injuries. Consistently, in vitro, DGKE overexpression in human renal proximal tubule (HK-2) cells also protected against oxygen-glucose deprivation (OGD)/reoxygenation-induced cell death. Mechanistically, DGKE regulated Klotho expression, at least partly via the transcription factor Krüppel-like factor (KLF) 15. Moreover, a significant reduction in DGKE was also found in kidneys from patients with ischemia-associated acute tubular necrosis (ATN). Collectively, our studies demonstrate that DGKE protects against AKI in mice at least partly through KLF15/Klotho signaling pathway, indicating that DGKE may present an innovative therapeutic strategy for treating patients with AKI.
Collapse
Affiliation(s)
- Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhuanli Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fuwen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Junyao Du
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingwei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Muchen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wei Tang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
8
|
Ma Z, Hu X, Ding HF, Zhang M, Huo Y, Dong Z. Single-Nucleus Transcriptional Profiling of Chronic Kidney Disease after Cisplatin Nephrotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:613-628. [PMID: 35092726 PMCID: PMC8978211 DOI: 10.1016/j.ajpath.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Cisplatin induces both acute and chronic nephrotoxicity during chemotherapy in patients with cancer. Presented here is the first study of single-nucleus RNA sequencing (snRNA-seq) of cisplatin-induced nephrotoxicity. Repeated low-dose cisplatin treatment (RLDC) led to decreases in renal function and kidney weight in mice at 9 weeks. The kidneys of these mice showed tubular degeneration and dilation. snRNA-seq identified 16 cell types and 17 cell clusters in these kidneys. Cluster-by-cluster comparison demonstrated cell type-specific changes in gene expression and identified a unique proximal tubule (PT) injury/repair cluster that co-expressed the injury marker kidney injury molecule-1 (Kim1) and the proliferation marker Ki-67. Compared with control, post-RLDC kidneys had 424 differentially expressed genes in PT cells, including tubular transporters and cytochrome P450 enzymes involved in lipid metabolism. snRNA-seq also revealed transcriptional changes in potential PT injury markers (Krt222, Eda2r, Ltbp2, and Masp1) and repair marker (Bex4). RLDC induced inflammation and proinflammatory cytokines (RelB, TNF-α, Il7, Ccl2, and Cxcl2) and the expression of fibrosis markers (fibronectin, collagen I, connective tissue growth factor, vimentin, and α-smooth muscle actin). Together, these results provide new insights into RLDC-induced transcriptional changes at the single-cell level that may contribute to the development of chronic kidney problems in patients with cancer after cisplatin chemotherapy.
Collapse
Affiliation(s)
- Zhengwei Ma
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia.
| | - Xiaoru Hu
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han-Fei Ding
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Augusta, Georgia; Charlie Norwood VA Medical Center, Augusta, Georgia.
| |
Collapse
|
9
|
Gao M, Li H, Liu Q, Ma N, Zi P, Shi H, Du Y. KLF6 Promotes Pyroptosis of Renal Tubular Epithelial Cells in Septic Acute Kidney Injury. Shock 2022; 57:417-426. [PMID: 34710881 DOI: 10.1097/shk.0000000000001881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Septic acute kidney injury (SAKI) represents a clinical challenge with high morbidity and mortality. The current study aimed to analyze the effects and molecular mechanism of Krüppel-like factor 6 (KLF6) on SAKI. First, SAKI mouse models were established by cecum ligation and puncture, while in vivo cell models were established using lipopolysaccharide (LPS). RT-qPCR assay was subsequently performed to detect the levels of KLF6 mRNA. SAKI mice and LPS-treated TCMK-1 cells were further treated with KLF6 siRNA. Afterward, HE staining, PAS staining, Western blot assay, and ELISA were adopted to ascertain the effects of KLF6 in pyroptosis. The binding relationships between KLF6 and miR-223-3p promoter /miR-223-3p and NLRP3 were analyzed with the help of CHIP and dual-luciferase reporter assays. RT-qPCR was adopted to determine the expression patterns of miR-223-3p and NLRP3. Lastly, a rescue experiment was designed to confirm the role of miR-223-3p. It was found that KLF6 was highly expressed in SAKI, whereas knockdown of KLF6 alleviated oxidative stress (OS) and pyroptosis in SAKI mice and LPS-treated TCMK-1 cells. Mechanistic results confirmed that KLF6 inhibited miR-223-3p via binding to the miR-223-3p promoter and promoted NLRP3. On the other hand, downregulation of miR-223-3p activated the NLRP3/Caspase-1/IL-1β pathway and aggravated OS and pyroptosis. Overall, our findings indicated that KLF6 inhibited miR-223-3p via binding to the miR-223-3p promoter and promoted NLRP3, and activated the NLRP3/Caspase-1/IL-1β pathway, thereby aggravating pyroptosis and SAKI.
Collapse
Affiliation(s)
- Min Gao
- Department of Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Effects of ondansetron use on outcomes of acute kidney injury in critically ill patients: An analysis based on the MIMIC-IV database. J Crit Care 2021; 66:117-122. [PMID: 34509800 DOI: 10.1016/j.jcrc.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Acute kidney injury (AKI) in intensive care units (ICUs) is a health priority with limited treatment options. This study aimed to estimate the effects of ondansetron use on AKI patient outcomes. MATERIALS AND METHODS We used the MIMIC-IV database to compare AKI patient mortality in the ICU with and without ondansetron and calculated hazard ratios (HRs) with 95% confidence intervals (95%CI) by multivariable Cox regression. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were applied to adjust for confounding factors. RESULTS In total, 26,004 AKI patients were included. Ondansetron use reduced in-hospital mortality risk by 16% among AKI patients (HR: 0.84, 95%CI: 0.77-0.90, p < 0.001). In-hospital mortality was significantly reduced among patients administered ondansetron at AKI stage 1 (11.4% vs. 16.5%. p < 0.001) and stage 2 (16.1% vs. 19.6%. p < 0.001) but not stage 3 (24.0% vs. 23.9%. p = 0.890). Patients younger than 60 years or receiving surgery received greater benefits from ondansetron use. (HR: 0.62, 95%CI:0.53-0.72 and HR: 0.59, 95%CI:0.50-0.69, respectively). CONCLUSIONS This cohort study showed that ondansetron use is significantly associated with reduced risk-adjusted in-hospital mortality in stages 1 and 2 AKI patients in the ICU. Further randomized controlled trials are needed.
Collapse
|