1
|
Liu D, Guan Y. Mechanism of action of miR-15a-5p and miR-152-3p in paraquat-induced pulmonary fibrosis through Wnt/β-catenin signaling mediation. PeerJ 2024; 12:e17662. [PMID: 38993979 PMCID: PMC11238725 DOI: 10.7717/peerj.17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
Background miRNAs are small, conserved, single-stranded non-coding RNA that are typically transported by exosomes for their functional roles. The therapeutic potential of exosomal miRNAs has been explored in various diseases including breast cancer, pancreatic cancer, cholangiocarcinoma, skin diseases, Alzheimer's disease, stroke, and glioma. Pathophysiological processes such as cellular inflammation, apoptosis, necrosis, immune dysfunction, and oxidative stress are closely associated with miRNAs. Internal and external factors such as tissue ischemia, hypoxia, pathogen infection, and endotoxin exposure can trigger these reactions and are linked to miRNAs. Paraquat-induced fibrosis is a protracted process that may not manifest immediately after injury but develops during bodily recovery, providing insights into potential miRNA intervention treatments. Rationale These findings could potentially be applied for further pharmaceutical research and clinical therapy of paraquat-induced pulmonary fibrosis, and are likely to be of great interest to clinicians involved in lung fibrosis research. Methodology Through a literature review, we identified an association between miR-15a-5p and miR-152-3p and their involvement in the Wnt signaling pathway. This allowed us to deduce the molecular mechanisms underlying regulatory interactions involved in paraquat-induced lung fibrosis. Results miR-15a-5p and miR-152-3p play roles in body repair processes, and pulmonary fibrosis can be considered a form of reparative response by the body. Although the initial purpose of fibrotic repair is to restore normal body function, excessive tissue fibrosis, unlike scar formation following external skin trauma, can significantly and adversely affect the body. Modulating the Wnt/β-catenin signaling pathway is beneficial in alleviating tissue fibrosis in various diseases. Conclusions In this study, we delineate the association between miR-15a-5p and miR-152-3p and the Wnt/β-catenin signaling pathway, presenting a novel concept for addressing paraquat-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Dong Liu
- Weifang Medical University, Weifang, Shandong, China
| | - Yan Guan
- Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Zhao T, Sun Z, Lai X, Lu H, Liu L, Li S, Yuan JH, Guo Z. Tamoxifen exerts anti-peritoneal fibrosis effects by inhibiting H19-activated VEGFA transcription. J Transl Med 2023; 21:614. [PMID: 37697303 PMCID: PMC10494369 DOI: 10.1186/s12967-023-04470-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) remains limited due to dialysis failure caused by peritoneal fibrosis. Tamoxifen (TAM), an inhibitor of estrogen receptor 1 (ESR1), has been reported to treat fibrosis, but the underlying mechanism remains unknown. In this study, we sought to explore whether tamoxifen played an anti-fibrotic role by affecting transcription factor ESR1. METHODS ESR1 expression was detected in the human peritoneum. Mice were daily intraperitoneally injected with 4.25% glucose PD dialysate containing 40 mM methylglyoxal for 2 weeks to establish PD-induced peritoneal fibrosis. Tamoxifen was administrated by daily gavage, at the dose of 10 mg/kg. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay were performed to validate ESR1 bound H19 promoter. Gain-of-function and loss-of-function experiments were performed to investigate the biological roles of H19 on the mesothelial-mesenchymal transition (MMT) of human peritoneal mesothelial cells (HPMCs). Intraperitoneal injection of nanomaterial-wrapped 2'-O-Me-modified small interfering RNA was applied to suppress H19 in the mouse peritoneum. RNA immunoprecipitation and RNA pull-down assays demonstrated binding between H19 and p300. Exfoliated peritoneal cells were obtained from peritoneal dialysis effluent to analyze the correlations between ESR1 (or H19) and peritoneal solute transfer rate (PSTR). RESULTS ESR1 was increased significantly in the peritoneum after long-term exposure to PD dialysate. Tamoxifen treatment ameliorated high glucose-induced MMT of HPMCs, improved ultrafiltration rate, and decreased PSTR of mouse peritoneum. Tamoxifen reduced the H19 level by decreasing the ESR1 transcription of H19. Depletion of H19 reversed the pro-fibrotic effect of high glucose while ectopic expression of H19 exacerbated fibrotic pathological changes. Intraperitoneal injection of nanomaterial-wrapped 2'-O-Me-modified siRNAs targeting H19 mitigated PD-related fibrosis in mice. RNA immunoprecipitation (RIP) and RNA pull-down results delineated that H19 activated VEGFA expression by binding p300 to the VEGFA promoter and inducing histone acetylation of the VEGFA promoter. ESR1 and H19 were promising targets to predict peritoneal function. CONCLUSIONS High glucose-induced MMT of peritoneal mesothelial cells in peritoneal dialysis via activating ESR1. In peritoneal mesothelial cells, ESR1 transcribed the H19 and H19 binds to transcription cofactor p300 to activate the VEGFA. Targeting ESR1/H19/VEGFA pathway provided new hope for patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200433, China
| | - Zhengyu Sun
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Xueli Lai
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Nutrition, Naval Medical University, Shanghai, 200433, China
| | - Lulu Liu
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Shuangxi Li
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Zhiyong Guo
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
3
|
Shao Q, Jiang C, Zhang Q, Liu J, Jin B, Zhao M, Xia Y. Knockdown of AK142426 suppresses M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun. J Gene Med 2023; 25:e3524. [PMID: 37194352 DOI: 10.1002/jgm.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Peritoneal fibrosis is a common complication of peritoneal dialysis, which may lead to ultrafiltration failure and ultimately treatment discontinuation. LncRNAs participate in many biological processes during tumorigenesis. We investigated the role of AK142426 in peritoneal fibrosis. METHODS The AK142426 level in peritoneal dialysis (PD) fluid was detected by quantitative real-time-PCR assay. The M2 macrophage distribution was determined by flow cytometry. The inflammatory cytokines of TNF-α and TGF-β1 were measured by ELISA assay. The direct interaction between AK142426 and c-Jun was evaluated by RNA pull-down assay. In addition, the c-Jun and fibrosis related proteins were assessed by western blot analysis. RESULTS The PD-induced peritoneal fibrosis mouse model was successfully established. More importantly, PD treatment induced M2 macrophage polarization and the inflammation in PD fluid, which might be associated with exosome transmission. Fortunately, AK142426 was observed to be upregulated in PD fluid. Mechanically, knockdown of AK142426 suppressed M2 macrophage polarization and inflammation. Furthermore, AK142426 could upregulate c-Jun through binding c-Jun protein. In rescue experiments, overexpression of c-Jun could partially abolish the inhibitory effect of sh-AK142426 on the activation of M2 macrophages and inflammation. Consistently, knockdown of AK142426 alleviated peritoneal fibrosis in vivo. CONCLUSIONS This study demonstrated that knockdown of AK142426 suppressed M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun, suggesting that AK142426 might be a promising therapeutic target for patients of peritoneal fibrosis.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zang D, Li J, Zhou C. Clinical expression of microRNA-144-5p and its regulatory effect on renal function in uremia. Ther Apher Dial 2023; 27:246-252. [PMID: 35997718 DOI: 10.1111/1744-9987.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The study commits to probing the clinical expression of microRNA-144-5p (miR-144-5p) and its modulatory effect on the renal function of uremia. METHODS Levels of blood urea nitrogen (BUN), β2-microglobulin (β2-MG), serum creatinine (Scr), blood calcium (Ca), phosphorus (P), and intact parathyroid hormone (iPTH) and miR-144-5p expression in serum of uremia patients were detected. The correlation among miR-144-5p expression with BUN, β2-MG, Scr, Ca, P, and iPTH levels in uremic patients was analyzed. The rats were injected with miR-144-5p agomir to detect the change of BUN, Scr, β2-MG, Scr, Ca, P, and iPTH levels in uremic rats. RESULTS miR-144-5p expression in uremic patients was negatively correlated with BUN, Scr, β2-MG, P, and iPTH levels, and positively correlated with free Ca concentration in blood. miR-144-5p elevation reduced BUN, Scr, β2-MG, P, and iPTH levels, and increased free Ca concentration in blood in uremic rats. CONCLUSION miR-144-5p is lowly expressed, and miR-144-5p has a regulatory effect on renal function in uremia.
Collapse
Affiliation(s)
- Dong Zang
- Department of Clinical Laboratory, Beijing Hospital of Integrated Traditional Chinese and Western, Beijing, China
| | - Junyi Li
- Department of Clinical Laboratory, Beijing Maternal and Child Health Care Hospital Yanqing District, Beijing, China
| | - Chuanyan Zhou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Fu M, Yin W, Zhang W, Zhu Y, Ni H, Gong L. MicroRNA-15a inhibits hepatic stellate cell activation and proliferation via targeting SRY-box transcription factor 9. Bioengineered 2022; 13:13011-13020. [PMID: 35611752 PMCID: PMC9276033 DOI: 10.1080/21655979.2022.2068895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating research have indicated that microRNAs are associated with the progression of hepatic fibrosis (HF). Nevertheless, the biological role and function of microRNA (miR)-15a in HF are still unknown. Our data revealed that miR-15a expression was decreased in TGF-β1-treated LX-2 cells and CCl4-induced mouse model. Additionally, miR-15a could directly target the 3’‑untranslated region of SRY-box transcription factor 9 (SOX9) to inhibit its expression. miR-15a overexpression attenuated the viability and invasion, but enhanced apoptosis in LX-2 cells. However, miR-15a knockdown had the opposite effects. Interestingly, SOX9 overexpression reversed the changes in cell viability, invasion and apoptosis mediated by miR-15a overexpression. Moreover, the miR-15a overexpression-mediated collagen I and alpha smooth muscle actin (a-SMA) downregulation were reversed by SOX9 overexpression. Overall, miR-15a could inhibit LX-2 cell viability and HF pathogenesis by targeting SOX9 in vitro and in vivo.
Collapse
Affiliation(s)
- Maoying Fu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Weihua Yin
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Yanfang Zhu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Huihui Ni
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Li Gong
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| |
Collapse
|
6
|
Niderla-Bielińska J, Ścieżyńska A, Moskalik A, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Kiernozek E, Podgórska A, Ciszek B, Majchrzak B, Ratajska A. A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. Int J Mol Sci 2021; 22:2197. [PMID: 33672153 PMCID: PMC7926522 DOI: 10.3390/ijms22042197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiac macrophages are known from various activities, therefore we presume that microRNAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an animal model of MetS) were counted and sorted with flow cytometry, which yielded two populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated, and miRNA expression profiles were evaluated with Next Generation Sequencing. We successfully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this paper, for the first time we describe the miRNA transcription profile in two distinct macrophage populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved in the regulation of MetS-related cardiac remodeling.
Collapse
Affiliation(s)
- Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Krzysztof Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
| | - Mateusz Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
- Department of History of Medicine, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Anna Podgórska
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Bogdan Ciszek
- Department of Clinical Anatomy, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| |
Collapse
|