1
|
Xia X, Fan X, Jiang S, Liao Y, Sun Y. Unveiling the intricate interplay: Exploring biological bridges between renal ischemia-reperfusion injury and T cell-mediated immune rejection in kidney transplantation. PLoS One 2024; 19:e0311661. [PMID: 39715172 DOI: 10.1371/journal.pone.0311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/22/2024] [Indexed: 12/25/2024] Open
Abstract
Although the link between ischemia-reperfusion injury (IRI) and T cell-mediated rejection (TCMR) in kidney transplantation (KT) is well known, the mechanism remains unclear. We investigated essential genes and biological processes involved in interactions between IRI and TCMR. METHODS Renal IRI and TCMR datasets were obtained from the Gene Expression Omnibus database. IRI and TCMR co-expression networks were built using weighted gene co-expression network analysis, and essential modules were identified to acquire shared genes and conduct functional enrichment analysis. Shared genes were used for TCMR consensus clustering, differentially expressed genes (DEGs) were identified, and gene set enrichment analysis (GSEA) was conducted. Three machine learning algorithms screened for hub genes, which underwent miRNA prediction and transcription factor analysis. Hub gene expression was verified, and survival analysis was performed using Kaplan-Meier curves. RESULTS IRI and TCMR shared 84 genes. Functional enrichment analysis revealed that inflammation played a significant role. Based on shared genes, TCMR was divided into two clusters. GSEA revealed that graft rejection-related pathways varied between the two clusters. TCMR hub genes, guanylate-binding protein 1 (GBP1) and CD69, showed increased expression. Decreased survival rates were found in patients who had undergone KT and had high GBP1 and CD69 levels. CONCLUSIONS The study demonstrates that renal IRI has a potential role in renal TCMR and the pathogenic pathways are potentially inflammation-related.
Collapse
Affiliation(s)
- Xinyi Xia
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Xinrui Fan
- Faculty of Psychology, Sleep and NeuroImaging Center, Southwest University, Chongqing, China
| | - Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology and Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Tongji Medical College, Wuhan, China
| | - Yang Sun
- Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Yan M, Zhang N, Quan L, Bin W, Xi J, Dou C, Liu Z, Gui Y, Yin LH. NF-κB/miR-455-5p/SOCS3 Axis Aggravates Sepsis-Induced Acute Kidney Injury through Promoting Renal Inflammation. Nephron Clin Pract 2024:1-12. [PMID: 39378861 DOI: 10.1159/000541727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Sepsis is the leading contributor to acute kidney injury (AKI), responsible for 45-70% of AKI occurrences. Despite this, septic AKI is a highly multifactorial and complex condition, and our grasp of its pathogenesis is still not fully developed. Consequently, there remains a significant gap in effective diagnostic and therapeutic strategies for septic AKI. METHODS In the in vitro experiments, BUMPT cells were exposed to lipopolysaccharides (LPS). In vivo experiments involved inducing sepsis in mice through administration of LPS injections. Additionally, in certain experiments, either a miR-455-5p mimic or an anti-miR-455-5p LAN was administered to the mice via injections into the tail vein. The mice were then sacrificed 24 h following LPS administration for subsequent analysis. RESULTS We observed a significant elevation in miR-455-5p levels within renal tubular cells following LPS-induced septic AKI. Our investigation revealed that NF-κB plays a crucial role in the upregulation of miR-455-5p. Inhibition of NF-κB using TPCA-1 prevented the rise in miR-455-5p levels in BUMPT cells (mouse proximal tubular cells from Boston University) cultured in vitro. Chromatin immunoprecipitation assays confirmed that NF-κB directly interacts with the promoter region of the miR-455-5p gene in response to LPS treatment. Functionally, introducing miR-455-5p mimics intensified cell apoptosis, kidney damage, and the production of inflammatory cytokines, while silencing miR-455-5p had protective effects in septic mice. Notably, administering anti-miR-455-5p enhanced SOCS3 expression, whereas miR-455-5p mimics reduced SOCS3 levels following LPS exposure. Furthermore, our luciferase reporter assays demonstrated that SOCS3 is a direct target of miR-455-5p. CONCLUSION This study indicates an NF-κB/miR-455-5p/SOCS3 axis which can exacerbate kidney damage by enhancing renal inflammation. This process highlights potential therapeutic targets for managing septic AKI.
Collapse
Affiliation(s)
- Mingjuan Yan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China,
| | - Ni Zhang
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Li Quan
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Wei Bin
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Jing Xi
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Caoshuai Dou
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Yongfeng Gui
- Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changsha, China
| | - Liang-Hong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of MicroRNA in the Pathogenesis of Acute Kidney Injury. Cells 2024; 13:1559. [PMID: 39329743 PMCID: PMC11444149 DOI: 10.3390/cells13181559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) describes a condition associated with elevated serum creatinine levels and decreased glomerular filtration rate. AKI can develop as a result of sepsis, the nephrotoxic properties of several drugs, and ischemia/reperfusion injury. Renal damage can be associated with metabolic acidosis, fluid overload, and ionic disorders. As the molecular background of the pathogenesis of AKI is insufficiently understood, more studies are needed to identify the key signaling pathways and molecules involved in the progression of AKI. Consequently, future treatment methods may be able to restore organ function more rapidly and prevent progression to chronic kidney disease. MicroRNAs (miRNAs) are small molecules that belong to the non-coding RNA family. Recently, numerous studies have demonstrated the altered expression profile of miRNAs in various diseases, including inflammatory and neoplastic conditions. As miRNAs are major regulators of gene expression, their dysregulation is associated with impaired homeostasis and cellular behavior. The aim of this article is to discuss current evidence on the involvement of miRNAs in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Kooshari A, Shahriyary F, Shahidi M, Vafajoo M, Amirzargar MR. Tetrahydroisoquinoline reduces angiogenesis by interacting myeloma cells with HUVECs mediated by extracellular vesicles. Med Oncol 2024; 41:217. [PMID: 39102060 DOI: 10.1007/s12032-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Multiple myeloma (MM) is a neoplastic condition resulting from the uncontrolled expansion of B-cell-derived plasma cells. The importance of angiogenesis in MM development has also been demonstrated. Extracellular vesicles (EVs) have vital functions in interactions between neighboring cells, such as angiogenesis. The objective of this in vitro study was to examine the transfection and angiogenesis effects of MM-EVs on endothelial cells (ECs) upon treatment with Tetrahydroisoquinoline (THIQ) as a bioactive organic compound derivative from isoquinoline. Following treatment of multiple myeloma cells (U266) with THIQ, MM-EVs were harvested and transmigrated to human umbilical vein endothelial cells (HUVEC) in a co-culture model. EVs transmigration was traced by flow cytometry. Correspondingly, the expression of angiogenic genes and/or proteins in U266 cells and HUVECs was measured by RT-PCR and ELISA methods. Likewise, the proliferation and migration of HUVECs treated with THIQ-treated MM-EVs were visualized and estimated by performing both tube formation and scratch wound healing methods. Surprisingly, the anti-angiogenic effect of THIQ-treated MM-EVs was evident by the decreased expression of CD34, VEGFR2, and IL-6 at the mRNA and/or protein levels after internalization of MM-EVs in HUVEC. Finally, tube formation and scratch wound healing experiments showed inhibition of HUVEC cell proliferation and migration by THIQ-treated MM-EVs compared to control MM-EVs. MM-EVs derived from THIQ-treated myeloma cells (U266) inhibited angiogenesis in HUVECs. This phenomenon is coordinated by the internalized THIQ-treated MM-EVs in HUVECs, and ultimately the reduction of angiogenic factors and inhibition of tube formation and scratch wound healing.
Collapse
Affiliation(s)
- Ahmad Kooshari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran.
| | - Mahshid Vafajoo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, 14155-5983, Iran
| |
Collapse
|
5
|
Jennings H, McMorrow S, Chlebeck P, Heise G, Levitsky M, Verhoven B, Kink JA, Weinstein K, Hong S, Al‐Adra DP. Normothermic liver perfusion derived extracellular vesicles have concentration-dependent immunoregulatory properties. J Extracell Vesicles 2024; 13:e12485. [PMID: 39051751 PMCID: PMC11270586 DOI: 10.1002/jev2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) are major contributors to immunological responses following solid organ transplantation. Donor derived EVs are best known for their role in transplant rejection through transferring donor major histocompatibility complex proteins to recipient antigen presenting cells, a phenomenon known as ‛cross-decoration'. In contrast, donor liver-derived EVs are associated with organ tolerance in small animal models. Therefore, the cellular source of EVs and their cargo could influence their downstream immunological effects. To investigate the immunological effects of EVs released by the liver in a physiological and transplant-relevant model, we isolated EVs being produced during normothermic ex vivo liver perfusion (NEVLP), a novel method of liver storage prior to transplantation. We found EVs were produced by the liver during NEVLP, and these EVs contained multiple anti-inflammatory miRNA species. In terms of function, liver-derived EVs were able to cross-decorate allogeneic cells and suppress the immune response in allogeneic mixed lymphocyte reactions in a concentration-dependent fashion. In terms of cytokine response, the addition of 1 × 109 EVs to the mixed lymphocyte reactions significantly decreased the production of the inflammatory cytokines TNF-α, IL-10 and IFN-γ. In conclusion, we determined physiologically produced liver-derived EVs are immunologically regulatory, which has implications for their role and potential modification in solid organ transplantation.
Collapse
Affiliation(s)
- Heather Jennings
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Stacey McMorrow
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Peter Chlebeck
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Grace Heise
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Mia Levitsky
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bret Verhoven
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - John A. Kink
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kristin Weinstein
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - David P. Al‐Adra
- Department of Surgery, Division of TransplantationUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
6
|
Gao F, Wu S, Zhang K, Xu Z, Quan F. Goat milk exosomal microRNAs alleviate LPS-induced intestinal inflammation in mice. Int J Biol Macromol 2024; 268:131698. [PMID: 38642690 DOI: 10.1016/j.ijbiomac.2024.131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Intestinal inflammation is a common digestive system disease. Milk-derived exosomes can participate in intercellular communication and transport a variety of bioactive components, and the microRNAs (miRNAs) they carry play important roles in a variety of biological processes in the body. At present, the preventive effect and mechanism of action of goat milk exosomes and their derived miRNAs on intestinal inflammation are still unclear. In this study, the protective effect of goat milk exosomes on LPS-induced intestinal inflammation was investigated using mouse intestinal inflammation model and IEC-6 cell inflammation model. Small RNA sequencing was used to analyze the miRNA expression profile of goat milk exosomes. In this study, C-Exo and M-Exo alleviated intestinal inflammation by reducing the LPS-induced release of proinflammatory cytokines, inhibiting the increase in the NLRP3 protein and the activation of the TLR4/NFκB signaling pathway. C-Exo has a more significant inhibitory effect on them, and better therapeutic efficacy than M-Exo. Notably, the target genes of miRNAs in C-Exo and M-Exo were significantly enriched in immune-related pathways. Furthermore, their derived miR-26a-5p and miR-30a-5p were found to ameliorate the IEC-6 inflammatory response. These findings suggest that miRNAs in goat milk exosomes have the potential to attenuate LPS-induced intestinal inflammation.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Ni W, Zhao Y, Shen J, Yin Q, Wang Y, Li Z, Tang T, Wen Y, Zhang Y, Jiang W, Jiang L, Wei J, Gan W, Zhang A, Zhou X, Wang B, Liu BC. Therapeutic role of miR-26a on cardiaorenal injury in mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway. Chin Med J (Engl) 2024:00029330-990000000-00985. [PMID: 38445356 DOI: 10.1097/cm9.0000000000002978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Collapse
Affiliation(s)
- Weijie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yajie Zhao
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Jinxin Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225100, China
| | - Zuolin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Taotao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yilin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Liangyunzi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Jinxuan Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Weihua Gan
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Xiaoyu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| |
Collapse
|
8
|
Qu G, Li X, Jin R, Guan D, Ji J, Li S, Shi H, Tong P, Gan W, Zhang A. MicroRNA-26a alleviates tubulointerstitial fibrosis in diabetic kidney disease by targeting PAR4. J Cell Mol Med 2024; 28:e18099. [PMID: 38164021 PMCID: PMC10844712 DOI: 10.1111/jcmm.18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.
Collapse
Affiliation(s)
- Gaoting Qu
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Xingyue Li
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Ran Jin
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Dian Guan
- Department of Pediatric SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Jialing Ji
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Shanwen Li
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Huimin Shi
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Pingfan Tong
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Weihua Gan
- Department of Pediatric NephrologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| | - Aiqing Zhang
- Department of PediatricsThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingP.R. China
| |
Collapse
|
9
|
Chen J, Liu T, Cui H, Na Q, Liu S. MiRNA-26a-5p inhibits preterm labor initiation by targeting and regulating TRPC3 ion channel protein expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:357-366. [PMID: 37755144 DOI: 10.1002/tox.23972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The incidence of preterm birth (PTB) is increasing annually worldwide, leading to various health problems or even fetal deaths. Our previous work demonstrated the activation of transient receptor potential cation channel subfamily C 3 (TRPC3) in mice with PTB, and its activation could promote inward flow of calcium ions and uterine smooth muscle (USM) contraction via regulation of Cav3.2, Cav3.1, and Cav1.2. However, the upstream regulators of TRPC3 and its mechanisms remain unknown. In the present study, the binding of miR-26a-5p to the 3' untranslated region of TRPC3 was predicted by bioinformatics databases (TargetScanHuman and starBase v3.0) and confirmed by a dual-luciferase assay. MiR-26a-5p was downregulated, while TRPC3 was upregulated in the USM tissues of patients with PTB compared to people without PTB. The results showed that miR-26a-5p mimic transfection markedly reduced TRPC3 expression in LPS-stimulated USM cells. Additionally, miR-26a-5p regulated intracellular Ca2+ levels in USM cells by targeting TRPC3. Furthermore, miR-26a-5p inhibited the CPI17/PKC/PLCγ signaling pathway and reduced the expression of Cav3.2, Cav3.1, and Cav1.2. In conclusion, miR-26a-5p regulated the initiation of PTB by targeting TRPC3 and regulating intracellular Ca2+ levels. This study provides a promising diagnostic biomarker and therapeutic target for PTB.
Collapse
Affiliation(s)
- Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Tong Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Sishi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
10
|
Yue L, Gu Y, Xu J, Liu T. Roles of noncoding RNAs in septic acute kidney injury. Biomed Pharmacother 2023; 165:115269. [PMID: 37541179 DOI: 10.1016/j.biopha.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Septic acute kidney injury (SAKI) is one of the most common and life-threatening complications of sepsis. Patients with SAKI have increased mortality. However, the underlying pathogenesis is unclear, and the treatment targeting SAKI is unsatisfactory. Thus, identifying optimal biomarkers for SAKI diagnosis and treatment is an urgent requisite. Accumulating evidence indicates that noncoding RNAs (ncRNAs) are involved in the occurrence and progression of SAKI. In the present review, we summarized the studies of ncRNAs in SAKI, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The ncRNAs are divided into protective and damage factors according to their role in SAKI, and their expression patterns, functions, and molecular mechanisms were elaborated. Next, we proposed that ncRNAs have the potential to be diagnostic and prognostic biomarkers for SAKI and as new therapeutic targets. This review aimed to provide a comprehensive overview of ncRNAs in SKAI and explored the clinical value of ncRNAs as ideal biomarkers of SAKI.
Collapse
Affiliation(s)
- Lili Yue
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Juntian Xu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
11
|
Shi W, Wan TT, Li HH, Guo SB. Blockage of S100A8/A9 ameliorates septic nephropathy in mice. Front Pharmacol 2023; 14:1172356. [PMID: 37547329 PMCID: PMC10398385 DOI: 10.3389/fphar.2023.1172356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Septic acute kidney injury (AKI) is the commonest cause of complication of sepsis in intensive care units, but its pathophysiology remains unclear. Calprotectin (S100A8/A9), which is a damage-associated molecular patterns (DAMPs) molecule, exerts a critical role in modulating leukocyte recruitment and inflammatory response during various diseases. However, role of S100A8/A9 in septic AKI is largely unknown. In this research, Septic AKI was triggered by cecal ligation and puncture (CLP) operation in wild-type mice, which treated with or without an S100A9 inhibitor, Paquinimod (Paq, 10 mg/kg) that prevents S100A8/A9 to bind to Toll-like receptor 4 (TLR4). Renal function, pathological changes, cell death, and oxidative stress were evaluated. Our research indicated that the mRNA and protein expression of S100A9 are time-dependently elevated in the kidney following CLP. Moreover, the administration of Paq for 24 h significantly improved CLP-induced renal dysfunction and pathological alterations compared with vehicle treatment in mice. These beneficial effects were associated with the inhibition of CLP-triggered renal tubular epithelial cell apoptosis, inflammation, superoxide production, and mitochondrial dynamic imbalance. What's more, we further confirmed the above findings by cell co-culture experiments. Our study demonstrates that S100A9 is a prominent protein to lead to septic AKI, and the selective inhibition of S100A9 could represent a new therapeutic approach which can treat septic AKI.
Collapse
Affiliation(s)
| | | | - Hui-Hua Li
- *Correspondence: Shu-Bin Guo, ; Hui-Hua Li,
| | | |
Collapse
|
12
|
Williams AC, Singh V, Liu P, Kriegel AJ. Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury. Noncoding RNA 2023; 9:ncrna9020024. [PMID: 37104006 PMCID: PMC10141369 DOI: 10.3390/ncrna9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R2 = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.
Collapse
Affiliation(s)
- Adaysha C. Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vaishali Singh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Lu Y, Liu M, Guo X, Wang P, Zeng F, Wang H, Tang J, Qin Z, Tao T. miR-26a-5p alleviates CFA-induced chronic inflammatory hyperalgesia through Wnt5a/CaMKII/NFAT signaling in mice. CNS Neurosci Ther 2023; 29:1254-1271. [PMID: 36756710 PMCID: PMC10068476 DOI: 10.1111/cns.14099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Inflammation often leads to the occurrence of chronic pain, and many miRNAs have been shown to play a key role in the development of inflammatory pain. However, whether miR-26a-5p relieves pain induced by inflammation and its possible mechanism are still unclear. METHODS The complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model was employed. Intrathecal or subcutaneous injection of miR-26a-5p agomir was performed after modeling to study its antinociceptive effect and the comparison of different administration methods. Bioinformatics analysis of miRNAs was performed to study the downstream mechanisms of miR-26a-5p. HE staining, RT-qPCR, Western blotting, and immunofluorescence were used for further validation. RESULTS A single intrathecal and subcutaneous injection of miR-26a-5p both reversed mechanical hypersensitivity and thermal latency in the left hind paw of mice with CFA-induced inflammatory pain. HE staining and immunofluorescence studies found that both administrations of miR-26a-5p alleviated inflammation in the periphery and spinal cord. Bioinformatics analysis and dual-luciferase reporter gene analysis identified Wnt5a as a direct downstream target gene of miR-26a-5p. Wnt5a was mainly expressed in neurons and microglia in the spinal cord of mice with inflammatory pain. Intrathecal injection of miR-26a-5p could significantly reduce the expression level of Wnt5a and inhibit the downstream molecules of noncanonical Wnt signaling Camk2/NFAT, inhibiting the release of spinal cord inflammatory factors and alleviating the activation of microglia. In addition, miR-26a-5p could also inhibit lipopolysaccharide (LPS)-stimulated BV2 cell inflammation in vitro through a noncanonical Wnt signaling pathway. CONCLUSIONS miR-26a-5p is a promising therapy for CFA-induced inflammatory pain. Both intrathecal and subcutaneous injections provide relief for inflammatory pain. miR-26a-5p regulated noncanonical Wnt signaling to be involved in analgesia partly through antineuroinflammation, suggesting a pain-alleviating effect via noncanonical Wnt signaling pathway in the CFA-induced inflammatory pain model in vivo.
Collapse
Affiliation(s)
- Yitian Lu
- Department of Anesthesiology, Nanfang hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Maozhu Liu
- Department of pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangna Guo
- Department of Anesthesiology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Anesthesiology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Fanning Zeng
- Department of Anesthesiology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
14
|
Yuan W, Li S, Yang YN, Gao H, Liu C. Epigallocatechin-3-gallate ameliorates inflammatory injury caused by sepsis by regulating the lncRNA PVT1/miR-16-5p/TLR4 axis. Cytokine 2023; 162:155994. [PMID: 36584452 DOI: 10.1016/j.cyto.2022.155994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sepsis is identified as a severe inflammatory disease. Epigallocatechin-3-gallate (EGCG) has been reported to be a powerful anti-inflammatory chemical substance in numerous diseases. However, the underlying mechanism of the anti-inflammatory effects of EGCG in sepsis remains to be elucidated. METHODS The surgery for cecal ligation and puncture (CLP) was performed on male C57BL/6J mice aged 8 weeks. THP-1 cells were treated with 1 μg/ml lipopolysaccharide (LPS) for 24 h to imitate sepsis in vitro. Haematoxylene-Eosin (HE) staining of the sections of liver, lung and kidney was performed to evaluate the pathological changes. The inflammatory cytokines were quantitated by ELISA. qRT-PCR was performed to measure the expression levels of PVT1, miR-16-5p, and TLR4. The protein level of TLR4 was also assessed by Western blotting. Double luciferase reporter assay and RIP assay were performed to validate the interactions among PVT1, miR-16-5p, and TLR4. RESULTS EGCG inhibited the expression levels of PVT1 and TLR4 and enhanced miR-16-5p expression in CLP-operated mice and LPS-treated THP-1 cells. EGCG reduced the levels of inflammatory cytokines, which were restored by PVT1 overexpression. Mechanistically, PVT1 bound with miR-16-5p to activate TLR4 signaling. Further experiments demonstrated that miR-16-5p silencing or TLR4 overexpression antagonized sh-PVT1 or miR-16-5p mimics-mediated inhibitory effects on inflammatory cytokines, respectively. Knockdown of PVT1 alleviated inflammatory injury in CLP-induced sepsis in mice. CONCLUSION EGCG may effectively lower the levels of sepsis-induced inflammatory cytokines by targeting the PVT1/miR-16-5p/TLR4 axis.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Ya-Nan Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, PR China
| | - Hui Gao
- Department of Anesthesiology, Yan'an University Affiliated Hospital, Xi'an 716000, Shaanxi Province, PR China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
15
|
Wang B, Xu J, Fu P, Ma L. MicroRNAs in septic acute kidney injury. BURNS & TRAUMA 2023; 11:tkad008. [PMID: 36959845 PMCID: PMC10027606 DOI: 10.1093/burnst/tkad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 01/29/2023] [Indexed: 03/25/2023]
Abstract
Sepsis is a potentially fatal complication of burns and trauma that can cause acute kidney injury (AKI) with substantial morbidity and mortality, but this disease is poorly understood. Despite medical advances, effective therapeutic regimens for septic AKI remain uncommon. MicroRNAs (miRNAs) are endogenous non-coding RNAs that influence the translation of target messenger RNAs in a variety of biological processes. Emerging evidence has shown that miRNAs are intimately associated with septic AKI. The goal of this review was to summarize recent advances in the profound understanding of the functional role of miRNAs in septic AKI, as well as to provide new insights into miRNAs as feasible biomarkers and therapeutic targets for septic AKI.
Collapse
Affiliation(s)
| | | | - Ping Fu
- Correspondence, Ping Fu, ; Liang Ma,
| | - Liang Ma
- Correspondence, Ping Fu, ; Liang Ma,
| |
Collapse
|
16
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
17
|
Xiao Y, Yan X, Shen L, Wang Q, Li F, Yang D, Wu W, Qian Y. Evaluation of qSOFA score, and conjugated bilirubin and creatinine levels for predicting 28‑day mortality in patients with sepsis. Exp Ther Med 2022; 24:447. [PMID: 35720627 PMCID: PMC9199080 DOI: 10.3892/etm.2022.11374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a dangerous disease that develops rapidly and has a high mortality rate. A timely and accurate assessment of the patient's condition is beneficial in improving prognosis and reducing mortality. Therefore, the present study was designed to investigate the potential association between quick sequential organ failure assessment (qSOFA) scores and biochemical indicators, such as conjugated bilirubin (CB) and creatinine levels, with the 28-day prognosis of patients with sepsis in a retrospective observational study. All cases were divided into survival and non-survival groups on the 28th day after diagnosis. The qSOFA scores, and CB and creatinine levels were significantly higher in the non-survival group than in the survival group (both P<0.01). Cox regression models identified CB [hazard ratio (HR), 1.006; P=0.002] and creatinine levels (HR, 1.002; P=0.024) as independent factors affecting 28-day mortality. The area under the curve (AUC) for CB and creatinine levels plus qSOFA score was 0.792 (95% confidence interval, 0.745-0.834), which was larger than the values for CB level, creatinine level and qSOFA score alone (all P<0.01) in the prognosis of 28-day mortality. The cut-off value of CB and creatinine levels plus qSOFA score for the 28-day mortality was 0.275 (-2.466 + 0.012 x CB + 0.002 x creatinine + 1.289 x qSOFA). Patients with lower combined predictor values had a better prognosis as demonstrated by Kaplan-Meier survival curves (log-rank test, 10.060; P=0.002). In both the septic shock and sepsis groups, the combined predictor value was higher in the non-survival group than in the survival group (P<0.001). Therefore, an increase in the combined predictor value of CB and creatinine levels plus qSOFA score may be an important predictor of disease progression and prognosis in patients with sepsis and septic shock.
Collapse
Affiliation(s)
- Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaotian Yan
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lingwei Shen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Qi Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Fugang Li
- Shanghai Upper Biotech Pharma Co. Ltd., Shanghai 201201, P.R. China
| | - Dan Yang
- Department of Clinical Laboratory, The First People's Hospital of Fuyang District, Hangzhou, Zhejiang 311499, P.R. China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, Shaanxi 710071, P.R. China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|