1
|
Dellalibera-Joviliano R, Garcia ME, Marins M, Fachin ALÚ, Couto LB, Mesquita E, Komoto TT, Silva G, Neto WC, Orlando L, Durand M, França SC, Bestetti RB. Interleukin-12 treatment reduces tumor growth and modulates the expression of CASKA and MIR-203 in athymic mice bearing tumors induced by the HGC-27 gastric cancer cell line. Pathol Res Pract 2024; 263:155625. [PMID: 39393266 DOI: 10.1016/j.prp.2024.155625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive system and due to its poor prognosis, there is an increase in the demand for more effective anticancer therapies. Interleukins are potential anticancer agents which can modulate expression of cancer related genes and have therapeutic effects. Interleukin 12 (IL-12) exhibits potent anti-tumor, anti-angiogenic and anti-metastatic activities and represents the ideal candidate for tumor immunotherapy, due to its ability to activate both innate and adaptive immunities. The aim of this study was to evaluate the effect of IL-12 administration on GC tumor growth induced in the cancer xenograft nude mouse model. Tumor development was analyzed weekly and after 8 weeks, the animals were sacrificed for cytokine analysis (IL-4, TNF-alfa, IL-2, INF-gamma, IL-12, IL-10, TGF-beta) by ELISA. The tumor cells in the implanted areas of the animals that developed solid growth of the tumor (anatomopathological analysis was performed). We have also evaluated CASK and miR203 expression, two related cell invasion factors, in the induced tumors after administration of 6 n/kg IL-12. The development of tumor masses was observed in all groups of animals inoculated with HGC-27 neoplastic cells. In animals treated with 6 n/kg IL-12, there was no tumor development confirmed by anatomopathological analysis. Changes in the levels of pro and anti-inflammatory cytokines were also observed. Our results indicated that miR203 expression was elevated while CASK was downregulated. These results suggest that IL-12 treatment repress the tumor growth by induction of miR203 expression which in turn repress CASK expression.
Collapse
Affiliation(s)
| | - Marcelo E Garcia
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil.
| | - Mozart Marins
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil; Biotechnology Unit, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Ana L Úcia Fachin
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil; Biotechnology Unit, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Lucélio B Couto
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Edgar Mesquita
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil; Syrian Lebanese Hospital, São Paulo, Brazil
| | - Tatiana T Komoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Gabriel Silva
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto-USP, Ribeirão Preto, SP, Brazil
| | - Walter Campos Neto
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Leonardo Orlando
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Marina Durand
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Suzelei C França
- Biotechnology Unit, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Reinaldo B Bestetti
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| |
Collapse
|
2
|
Ren Y, Liang H, Huang Y, Miao Y, Li R, Qiang J, Wu L, Qi J, Li Y, Xia Y, Huang L, Wang S, Kong X, Zhou Y, Zhang Q, Zhu G. Key candidate genes and pathways in T lymphoblastic leukemia/lymphoma identified by bioinformatics and serological analyses. Front Immunol 2024; 15:1341255. [PMID: 38464517 PMCID: PMC10920334 DOI: 10.3389/fimmu.2024.1341255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yansong Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yali Huang
- Clinical Laboratory of Zhengning County People's Hospital, Qingyang, Gansu, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ruihua Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Junlian Qiang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Lihong Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jinfeng Qi
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ying Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lunhui Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shoulei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaodong Kong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
4
|
Joeckel LT, Bird PI. Are all granzymes cytotoxic in vivo? Biol Chem 2014; 395:181-202. [DOI: 10.1515/hsz-2013-0238] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Granzymes are serine proteases mainly found in cytotoxic lymphocytes. The most-studied member of this group is granzyme B, which is a potent cytotoxin that has set the paradigm that all granzymes are cyototoxic. In the last 5 years, this paradigm has become controversial. On one hand, there is a plethora of sometimes contradictory publications showing mainly caspase-independent cytotoxic effects of granzyme A and the so-called orphan granzymes in vitro. On the other hand, there are increasing numbers of reports of granzymes failing to induce cell death in vitro unless very high (potentially supra-physiological) concentrations are used. Furthermore, experiments with granzyme A or granzyme M knock-out mice reveal little or no deficit in their cytotoxic lymphocytes’ killing ability ex vivo, but indicate impairment in the inflammatory response. These findings of non-cytotoxic effects of granzymes challenge dogma, and thus require alternative or additional explanations to be developed of the role of granzymes in defeating pathogens. Here we review evidence for granzyme cytotoxicity, give an overview of their non-cytotoxic functions, and suggest technical improvements for future investigations.
Collapse
|
5
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|