1
|
Garg S, Wu C, Ohmiya Y, Kaul SC, Wadhwa R. Express ELISA for detection of mortalin. Biotechniques 2019; 67:166-171. [PMID: 31502469 DOI: 10.2144/btn-2018-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mortalin is a widely studied stress chaperone that plays a significant role in diseases such as cancer, diabetes mellitus, liver cirrhosis, neurodegeneration and generalized aging. Based on these, the level of mortalin expression has been predicted to be an important and valuable diagnostic and prognostic marker. Conventional methods of protein analyses, such as Western blotting, immunohistochemistry or ELISA with antibodies provide specific, sensitive and useful outcomes. However, they are limited by lengthy and time-consuming protocols. Here, we present an upgrade to the existing ELISA techniques. We have prepared a conjugate of anti-mortalin antibody and luciferase enzyme that can be recruited for rapid (∼3 h) and quantitative detection of mortalin expression in a given biological sample.
Collapse
Affiliation(s)
- Sukant Garg
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.,School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Chun Wu
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan
| | - Yoshihiro Ohmiya
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan.,School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
2
|
Rondas D, Bugliani M, D'Hertog W, Lage K, Masini M, Waelkens E, Marchetti P, Mathieu C, Overbergh L. Glucagon-like peptide-1 protects human islets against cytokine-mediated β-cell dysfunction and death: a proteomic study of the pathways involved. J Proteome Res 2013; 12:4193-206. [PMID: 23937086 DOI: 10.1021/pr400527q] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic β-cells against cytokine-induced dysfunction and destruction. The mechanisms through which GLP-1 exerts its effects are complex and still poorly understood. The aim of this study was to analyze the protein expression profiles of human islets of Langerhans treated with cytokines (IL-1β and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated β-cell protection. Co-incubation of cytokine-treated human islets with GLP-1 resulted in a marked protection of β-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine-exposed human islets while protecting them against cytokine-mediated cell death and dysfunction. These data illustrate the beneficial effects of GLP-1 on human islets under immune attack, leading to a better understanding of the underlying mechanisms involved, a prerequisite for improving therapies for diabetic patients.
Collapse
Affiliation(s)
- Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Mitochondrial dysfunction plays a role in the pathogenesis of a wide range of diseases that involve disordered cellular fuel metabolism and survival/death pathways, including neurodegenerative diseases, cancer and diabetes. Cytokine, virus recognition and cellular stress pathways converging on mitochondria cause apoptotic and/or necrotic cell death of beta-cells in type-1 diabetes. Moreover, since mitochondria generate crucial metabolic signals for glucose stimulated insulin secretion (GSIS), mitochondrial dysfunction underlies both the functional derangement of GSIS and (over-nutrition) stress-induced apoptotic/necrotic beta-cell death, hallmarks of type-2 diabetes. The apparently distinct mechanisms governing beta-cell life/death decisions during the development of diabetes provide a remarkable example where remote metabolic, immune and stress signalling meet with mitochondria mediated apoptotic/necrotic death pathways to determine the fate of the beta-cell. We summarize the main findings supporting such a pivotal role of mitochondria in beta-cell death in the context of current trends in diabetes research.
Collapse
Affiliation(s)
- Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Mitochondrial Biology Group, University College London, Gower Street, WC1E 6BT London, UK.
| | | |
Collapse
|
4
|
Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Confinement exposure induces glucose regulated protein 75 (GRP75/mortalin/mtHsp70/PBP74/HSPA9B) in the hepatic tissue of gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:428-38. [DOI: 10.1016/j.cbpb.2007.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/25/2022]
|
5
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|
6
|
Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul S. Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 2006; 391:185-90. [PMID: 15957980 PMCID: PMC1276915 DOI: 10.1042/bj20050861] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.
Collapse
Affiliation(s)
- Renu Wadhwa
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Syuichi Takano
- †Laboratory of Biochemistry and Molecular Cell Biology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Kamaljit Kaur
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Satoshi Aida
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Tomoko Yaguchi
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Zeenia Kaul
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Takashi Hirano
- ‡Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazunari Taira
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Sunil C. Kaul
- *Gene Function Research Center, National Institute of Advanced Industrial Science & Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 2005; 17:1239-48. [PMID: 16091382 DOI: 10.1093/intimm/dxh300] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system is causing membrane damage and cell death. For protection, cells have adopted several resistance mechanisms, including removal of the membrane-inserted MAC by vesiculation. To identify proteins involved in MAC vesiculation, extracellular proteins released from K562 cells in response to treatment with sub-lytic complement were separated by acrylamide gel electrophoresis and protein bands were extracted, digested into peptides and the peptides were analyzed by mass spectrometry. A 75-kDa protein that was abundant in the supernatant of complement-treated cells was identified as mortalin/GRP75. Analysis by western blotting demonstrated that as early as 5 min after exposure to sub-lytic doses of complement, mortalin was released from K562 cells. Mortalin was released after complete activation of the complement system and formation of C5b-8, and even more so when C5b-9 was formed. Other pore formers, such as streptolysin O and melittin, did not induce release of mortalin. As shown, mortalin can bind to complement C8 and C9 and is shed in vesicles containing C9 and complement MACs. Anti-mortalin antibodies reduced mortalin release from complement-treated cells and elevated the extent of cell death by complement. Inhibitors of protein kinase C and extracellular signal-regulated protein kinase also prevented mortalin release from complement-activated cells. These results suggest that mortalin/GRP75 promotes the shedding of membrane vesicles loaded with complement MAC and protects cells from complement-mediated lysis.
Collapse
Affiliation(s)
- David Pilzer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|