1
|
Huang Y, Zhou MY, Li LL, Lv M, Xu ZS, Wu XJ, Gu SL, Zhang MY, Cai L, Li R. Bacopaside I, acting as an aquaporin 1 inhibitor, ameliorates rheumatoid arthritis via suppressing aquaporin 1-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156444. [PMID: 39892307 DOI: 10.1016/j.phymed.2025.156444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Aquaporin 1 (AQP1) is a promising target for regulating fibroblast-like synoviocyte (FLS) behaviors in rheumatoid arthritis (RA). Bacopaside I (BSI), the main active compound of the herbal medicine Bacopa monnieri with anti-RA effects, inhibits tumor cell growth by blocking AQP1, but its potential use in RA is unclear. PURPOSE To address BSI's anti-RA effects and elucidate its underlying mechanisms. METHODS We investigated BSI's therapeutic effects on TNF-α-induced RA FLS and identified AQP1 as its direct target through molecular docking, cellular thermal shift assay (CETSA), and AQP1 knockdown experiments. We studied BSI's impacts on rat adjuvant-induced arthritis (AIA) and synovial proliferation, apoptosis, and autophagy in AIA rat synovium. We explored the role of autophagy inhibition in BSI's effects in vitro and in vivo by co-treating with the autophagy activator rapamycin (Rapa) and/or the inhibitor 3-methyladenine (3-MA). RESULTS BSI suppressed proliferation, promoted apoptosis, and reduced autophagy in TNF-α-stimulated RA FLS. Notably, BSI's in vitro effects were reduced by Rapa and enhanced by 3-MA. The molecular docking and CETSA confirmed BSI's binding to AQP1, while AQP1 knockdown invalidated BSI's in vitro effects, further indicating AQP1 as the target of BSI. In vivo, BSI attenuated the severity of rat AIA, alongside reduced synovial proliferation, increased apoptosis, and decreased autophagy within AIA rat synovium. Moreover, Rapa co-treatment negated BSI's effects on synovial proliferation and apoptosis and abolished its anti-AIA activity. CONCLUSIONS BSI, as an AQP1 inhibitor, hindered AQP1-mediated autophagy, causing increased apoptosis, reduced proliferation in RA FLS, and relieved rat AIA symptoms.
Collapse
Affiliation(s)
- Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Min Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, PR China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230026, Anhui Province, PR China.
| |
Collapse
|
2
|
Nag S, Mohanto S, Ahmed MG, Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. MATERIALS TODAY CHEMISTRY 2024; 39:102178. [DOI: 10.1016/j.mtchem.2024.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
3
|
Guo P, Huang C, Yang Q, Zhong G, Zhang J, Qiu M, Zeng R, Gou K, Zhang C, Qu Y. Advances in Formulations of Microneedle System for Rheumatoid Arthritis Treatment. Int J Nanomedicine 2023; 18:7759-7784. [PMID: 38144510 PMCID: PMC10743780 DOI: 10.2147/ijn.s435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation, eventually leading to severe disability and premature death. At present, the treatment of RA is mainly to reduce inflammation, swelling, and pain. Commonly used drugs are non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs). These drugs lack specificity and require long-term, high-dose administration, which can cause serious adverse effects. In addition, the oral, intravenous, and intra-articular injections will reduce patient compliance, resulting in high cost and low bioavailability. Due to these limitations, microneedles (MNs) have emerged as a new strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. MNs can overcome the cuticle barrier of the skin without stimulating nerves and blood vessels. Which can increase patient compliance, improve bioavailability, and avoid systemic circulation. This review summarizes and evaluates the application of MNs in RA, especially dissolving MNs (DMNs). We encourage the use of MNs to treat RA, by describing the general properties of MNs, materials, preparation technology, drug release mechanism, and advantages. Furthermore, we discussed the biological safety, development prospects, and future challenges of MNs, hoping to provide a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chi Huang
- Department of Pharmacy, Jiang’an Hospital of Traditional Chinese Medicine, Yibin, 644200, People’s Republic of China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Rui Zeng
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| |
Collapse
|
4
|
Shangzu Z, Dingxiong X, ChengJun M, Yan C, Yangyang L, Zhiwei L, Ting Z, Zhiming M, Yiming Z, Liying Z, Yongqi L. Aquaporins: Important players in the cardiovascular pathophysiology. Pharmacol Res 2022; 183:106363. [PMID: 35905892 DOI: 10.1016/j.phrs.2022.106363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
Aquaporin is a membrane channel protein widely expressed in body tissues, which can control the input and output of water in cells. AQPs are differentially expressed in different cardiovascular tissues and participate in water transmembrane transport, cell migration, metabolism, inflammatory response, etc. The aberrant expression of AQPs highly correlates with the onset of ischemic heart disease, myocardial ischemia-reperfusion injury, heart failure, etc. Despite much attention to the regulatory role of AQPs in the cardiovascular system, the translation of AQPs into clinical application still faces many challenges, including clarification of the localization of AQPs in the cardiovascular system and mechanisms mediating cardiovascular pathophysiology, as well as the development of cardiovascular-specific AQPs modulators.Therefore, in this study, we comprehensively reviewed the critical roles of AQP family proteins in maintaining cardiovascular homeostasis and described the underlying mechanisms by which AQPs mediated the outcomes of cardiovascular diseases. Meanwhile, AQPs serve as important therapeutic targets, which provide a wide range of opportunities to investigate the mechanisms of cardiovascular diseases and the treatment of those diseases.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Xie Dingxiong
- Gansu Institute of Cardiovascular Diseases, LanZhou,China
| | - Ma ChengJun
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Liu Zhiwei
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhou Ting
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Yiming
- Gansu University of traditional Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of traditional Chinese Medicine, LanZhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou,China.
| | - Liu Yongqi
- Gansu University of traditional Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
5
|
Shukralla AA, Dolan E, Delanty N. Acetazolamide: Old drug, new evidence? Epilepsia Open 2022; 7:378-392. [PMID: 35673961 PMCID: PMC9436286 DOI: 10.1002/epi4.12619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 06/05/2022] [Indexed: 11/24/2022] Open
Abstract
Acetazolamide is an old drug used as an antiepileptic agent, amongst other indications. The drug is seldom used, primarily due to perceived poor efficacy and adverse events. Acetazolamide acts as a noncompetitive inhibitor of carbonic anhydrase, of which there are several subtypes in humans. Acetazolamide causes an acidification of the intracellular and extracellular environments activating acid‐sensing ion channels, and these may account for the anti‐seizure effects of acetazolamide. Other potential mechanisms are modulation of neuroinflammation and attenuation of high‐frequency oscillations. The overall effect increases the seizure threshold in critical structures such as the hippocampus. The evidence for its clinical efficacy was from 12 observational studies of 941 patients. The 50% responder rate was 49%, 20% of patients were rendered seizure‐free, and 30% were noted to have had at least one adverse event. We conclude that the evidence from several observational studies may overestimate efficacy because they lack a comparator; hence, this drug would need further randomized placebo‐controlled trials to assess effectiveness and harm.
Collapse
Affiliation(s)
| | - Emma Dolan
- The National Epilepsy Programme, Beaumont Hospital, Dublin, Ireland
| | - Norman Delanty
- The National Epilepsy Programme, Beaumont Hospital, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Disease, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Hurysz B, Bottini N. Emerging proteoglycans and proteoglycan-targeted therapies in rheumatoid arthritis. Am J Physiol Cell Physiol 2022; 322:C1061-C1067. [PMID: 35476502 DOI: 10.1152/ajpcell.00086.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a common auto-immune disease-causing inflammation of the joints and damage of the cartilage and bone. The pathogenesis of RA is characterized in many patients by the presence of antibodies against citrullinated proteins. In the joints, proteoglycans are key structural elements of extracellular matrix in the articular cartilage and synovium and are secreted as lubricants in the synovial fluid. Alterations of proteoglycans contribute to mechanism of disease in RA. Proteoglycans such as aggrecan can be citrullinated and become potential targets of the rheumatoid auto-immune response. Proteoglycans are also up-regulated in RA joints and/or undergo alterations of their regulatory functions over cytokines and chemokines, which promotes inflammation and bone damage. Recent studies have aimed to not only clarify these mechanisms but also develop novel proteoglycan-modulating therapeutics. These include agents altering the function and signaling of proteoglycans as well as tolerizing agents based on citrullinated aggrecan. This mini-review summarizes the most recent findings regarding the dysregulation of proteoglycans that contributes to RA pathogenesis and the potential for proteoglycan-modulating agents to improve RA therapy.
Collapse
Affiliation(s)
- Brianna Hurysz
- Department of Medicine, University of California, San Diego, San Diego, California, United States
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, San Diego, California, United States
| |
Collapse
|
7
|
Immunomodulatory Potential of Diuretics. BIOLOGY 2021; 10:biology10121315. [PMID: 34943230 PMCID: PMC8698805 DOI: 10.3390/biology10121315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
In this review, diuretics and their immunomodulatory functions are described. The effects on the immune response of this group of drugs are reported in patients suffering from hypertension and under experimental conditions involving animal models and cell line studies. The pathogenesis of hypertension is strongly connected to chronic inflammation. The vast majority of diuretics modulate the immune response, changing it in favor of the anti-inflammatory response, but depending on the drug, these effects may differ. This topic is significantly important in medical practice regarding the treatment of patients who have coexisting diseases with chronic inflammatory pathogenesis, including hypertension or chronic heart failure. In patients with metabolic syndrome, allergies, or autoimmune disorders, the anti-inflammatory effect is favorable, because of the overstimulation of their immune system. Otherwise, in the geriatric population, it is important to find the proper anti- and pro-inflammatory balance to avoid an enhancement of immune response suppression, which can result in reducing the risk of serious infections that can occur due to the age-diminished function of the immune system. This article is intended to facilitate the selection of an antihypertensive drug that depends on the patient's immune situation.
Collapse
|
8
|
Wu C, Cheng J, Li W, Yang L, Dong H, Zhang X. Programmable Polymeric Microneedles for Combined Chemotherapy and Antioxidative Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55559-55568. [PMID: 34783244 DOI: 10.1021/acsami.1c17375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease. Antioxidative treatment combined with chemotherapy holds great promise for RA treatment, and the ability to efficiently deliver drugs and antioxidants to the RA synovial joint is highly desired. Herein, we developed a programmable polymeric microneedle (MN) platform for transdermal delivery of methotrexate (MTX) and reactive oxygen species (ROS) scavengers for RA treatment. The biodegradable MNs made of polyvinylpyrrolidone (PVP) were incorporated with polydopamine/manganese dioxide (termed PDA@MnO2) and MTX. After insertion into skin tissue, the MNs degraded, thus enabling release of loaded MTX and PDA@MnO2. The PDA@MnO2 could be utilized as an MRI contrast agent in the RA synovial microenvironment. It also acted as a robust antioxidant to remove ROS and decrease RA inflammation, which when combined with the MTX-mediated chemotherapy led to an ideal outcome for RA treatments in a murine model. This work not only represents a valuable MN-assisted RA therapeutic agent transdermal delivery approach but also opens a new avenue for chemotherapy and antioxidative synergistic treatment of RA.
Collapse
Affiliation(s)
- Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R.China
| | - Jiale Cheng
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R.China
| | - Wei Li
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R.China
| | - Lingzhi Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R.China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R.China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R.China
| |
Collapse
|
9
|
Piperine treating sciatica through regulating inflammation and MiR-520a/P65 pathway. Chin J Nat Med 2021; 19:412-421. [PMID: 34092292 DOI: 10.1016/s1875-5364(21)60040-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/26/2022]
Abstract
Although the etiology of sciatica remains uncertain, there is increasing evidence that the disease process of sciatica is associated with the levels of inflammatory factors. Piperine, an alkaloid isolated from Piper nigrum, has previously been demonstrated to inhibit inflammation and analgesic effects. The purpose of this study is to verify the regulatory relationship between miR-520a and p65 and to explore how miR-520a/P65 affects the level of cytokines under the action of piperine, so as to play a therapeutic role in sciatica. Through ELISA experiment, we confirmed that four inflammatory factors (IL-1β, TNF-α, IL-10, TGF-β1) can be used as evaluation indexes of sciatica. The differentially expressed miRNA was screened as miR-520a, by microarray technology, and the downstream target of miR-520a was P65 by bioinformatics. Real-time fluorescence quantitative PCR confirmed that the expression of miR-520a was negatively correlated with pro-inflammatory cytokines, positively correlated with anti-inflammatory cytokines and negatively correlated with p65 expression at mRNA level. The expression of p65 was positively correlated with pro-inflammatory cytokines and negatively correlated with anti-inflammatory cytokines at the protein level verified by ELISA and Western blot. HE staining analysis showed that the nerve fibers were repaired by piprine, the vacuoles were significantly reduced, and the degree of nerve fiber damage was also improved. Immunohistochemical analysis showed that the expression of p65 decreased after administration of piperine. Dual-luciferase reporter gene assay confirmed that the luciferase signal decreased significantly after cotransfection of miR-520a mimics and p65 3'UTR recombinant plasmid. To sum up, in the rat model of non-compressed lumbar disc herniation, piperine plays a significant role in analgesia. MiR-520a can specifically and directly target P65, and piperine can promote the expression of miR-520a, then inhibit the expression of p65, down-regulate the pro-inflammatory factors IL-1β and TNF-α, and up-regulate the effects of anti-inflammatory factors IL-10 and TGF-β1, so as to treat sciatica.
Collapse
|
10
|
Mu YR, Cai L, Zhou MY, Liu MM, Li Z, Li R. Acetazolamide ameliorates the severity of collagen-induced arthritis in rats: Involvement of inducing synovial apoptosis and inhibiting Wnt/β-catenin pathway. Int Immunopharmacol 2021; 90:107214. [PMID: 33278748 DOI: 10.1016/j.intimp.2020.107214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
We previously revealed that the overexpression of synovial aquaporin 1 (AQP1) aggravated collagen-induced arthritis (CIA) in rats via regulating β-catenin signaling. This study was to demonstrate the therapeutic effect of acetazolamide (AZ, an AQP1 inhibitor) on rat CIA and explored its underlying mechanisms. Paw swelling, arthritis index, pathological assessments, and serum levels of collagen type II (Col II) antibody, IL-1β and TNF-α were measured to evaluate the anti-arthritic effect of AZ on rat CIA. Ki67 immunohistochemistry and TUNEL assay were performed to reveal the anti-proliferative and pro-apoptotic effects of AZ on synovial cells in vivo. The protein levels of apoptosis-related genes and Wnt/β-catenin pathway key members were detected by western blot. We found that AZ treatment on CIA rats could inhibit paw swelling, reduce arthritis index, alleviate the pathologic changes of ankle joint and decrease the serum levels of Col II antibody, TNF-α and IL-1β. AZ could reduce Ki67 expression and increase apoptosis index in CIA synovial tissues by reducing Bcl-2 protein level, increasing Bax and caspase 3 protein levels and normalizing Bcl-2/Bax ratio. Moreover, AZ could reduce the protein levels of Wnt1, β-catenin, p-GSK-3β (Ser9), c-myc, cyclin D1 and MMP9, while increase GSK-3β protein level in CIA synovial tissues. Importantly, these mentioned effects of AZ (60 mg/kg) on CIA rats could be reversed by the combined use of lithium chloride (LiCl), an activator of Wnt/β-catenin pathway. In short, AZ exerted potent anti-arthritic effects on CIA rats by inducing synovial apoptosis and inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Rong Mu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China.
| |
Collapse
|
11
|
Chlorogenic acid attenuates cyclophosphamide-induced rat interstitial cystitis. Life Sci 2020; 254:117590. [DOI: 10.1016/j.lfs.2020.117590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/30/2022]
|
12
|
Yin X, Huang H, Huang S, Xu A, Fan F, Luo S, Yan H, Chen L, Sun C, Hu Y. A Novel Scoring System for Risk Assessment of Elderly Patients With Cytogenetically Normal Acute Myeloid Leukemia Based on Expression of Three AQP1 DNA Methylation-Associated Genes. Front Oncol 2020; 10:566. [PMID: 32373535 PMCID: PMC7186486 DOI: 10.3389/fonc.2020.00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Aquaporin 1 (AQP-1), a transmembrane water channel protein, has been proven to involve in many diseases' progression and prognosis. This research aims to explore the prognostic value of AQP-1 in elderly cytogenetically normal acute myeloid leukemia (CN-AML). Methods: Complete clinical and expression data of 226 elderly patients (aged > 60) with cytogenetically normal acute myeloid leukemia (CN-AML) were downloaded from the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We have explored prognostic significance of AQP-1, investigated the underlying mechanism, and developed a novel scoring system for the risk assessment of elderly patients with AML based on AQP1 methylation. Results: In the first and second independent group, AQP1 shows lower expression in CN-AML than normal people, while high AQP1 expression and AQP1 promoter hypomethylation were related to better overall survival (OS; P < 0.05). To understand the underlying mechanisms, we investigated differentially expressed genes (DEGs), miRNA and lncRNA associated with AQP1 methylation. A three-gene prognostic signature based on AQP1 methylation which was highly correlated with OS was established, and the performance was validated by Permutation Test and Leave-one-out Cross Validation method. Furthermore, an independent cohort was used to verify the prognostic value of this model. Conclusions: AQP1 methylation could serve as an independent prognostic biomarker in elderly CN-AML, and may provide new insights for the diagnosis and treatment for elderly CN-AML patients.
Collapse
Affiliation(s)
- Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifan Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
14
|
McLennan R, McKinney MC, Teddy JM, Morrison JA, Kasemeier-Kulesa JC, Ridenour DA, Manthe CA, Giniunaite R, Robinson M, Baker RE, Maini PK, Kulesa PM. Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia. Development 2020; 147:dev.185231. [PMID: 31826865 DOI: 10.1242/dev.185231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023]
Abstract
Neural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin 1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed and direction, as well as the length and stability of cell filopodia. Furthermore, AQP-1 enhances matrix metalloprotease activity and colocalizes with phosphorylated focal adhesion kinases. Colocalization of AQP-1 with EphB guidance receptors in the same migrating neural crest cells has novel implications for the concept of guided bulldozing by lead cells during migration.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Craig A Manthe
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Rasa Giniunaite
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Martin Robinson
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK.,Department of Computer Science, Parks Road, Oxford OX1 3QD, UK
| | - Ruth E Baker
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Philip K Maini
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Zhu K, Huang G, Xie J, Zhou X, Mu J, Zhao X. Preventive effect of flavonoids from Wushan Shencha ( Malus doumeri leaves) on CCl 4-induced liver injury. Food Sci Nutr 2019; 7:3808-3818. [PMID: 31763030 PMCID: PMC6848815 DOI: 10.1002/fsn3.1243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/29/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022] Open
Abstract
Wushan Shencha (Malus doumeri leaf) is a unique tea-like drink. Herein, the effect of flavonoids from Wushan Shencha (FWSSC) on carbon tetrachloride-induced liver injury was studied. The serum and liver tissues of experimental mice were analyzed by kits, a slice technique, and qPCR assay. The liver index is a calculated liver-to-body weight ratio, and the experimental results showed that FWSSC reduced the liver index of the model group with liver injury, which was the highest. Sections stained with H&E showed that FWSSC reduced stem cell necrosis caused by liver injury. FWSSC reduced the serum levels of AST, ALT, TG, and TC, as well as the levels of IL-6, TNF-α, and IFN-γ cytokines in the serum of mice with liver injury. Liver biochemical tests also showed that FWSSC increased the SOD activity and decreased TC, TG, and MPO levels in mice with liver injury. It was found that FWSSC upregulated the expression of Cu/Zn-SOD, Mn-SOD, CAT, and IκB-α, and downregulated the expression of NF-κB, COX-2, TNF-α, and IL-1β in the liver tissue of mice with liver injury by detecting the expression of mRNA in liver tissue. It is concluded that FWSSC is an active substance with hepatoprotective effects. The activity of FWSSC increased with increasing concentration, and the hepatoprotective effect of FWSSC at 100 mg/kg concentration was stronger than that of silymarin.
Collapse
Affiliation(s)
- Kai Zhu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Guangbin Huang
- Department of Trauma Surgery, Emergency Medical Center of Chongqingthe Affiliated Central Hospital of Chongqing UniversityChongqingChina
| | - Jing Xie
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
16
|
Yan S, Wang P, Wang J, Yang J, Lu H, Jin C, Cheng M, Xu D. Long Non-coding RNA HIX003209 Promotes Inflammation by Sponging miR-6089 via TLR4/NF-κB Signaling Pathway in Rheumatoid Arthritis. Front Immunol 2019; 10:2218. [PMID: 31620132 PMCID: PMC6759987 DOI: 10.3389/fimmu.2019.02218] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating studies have suggested that long non-coding RNAs (lncRNAs) have drawn more and more attention in rheumatoid arthritis (RA), which can function as competitive endogenous RNAs (ceRNAs) in inflammation and immune disorders. Previously, we have found that lncRNA HIX003209 is differentially expressed in RA. However, the precise mechanism of lncRNA HIX003209 in RA is still vague. We aim to elucidate the role and its targeted microRNA of lncRNA HIX003209 in RA as ceRNA. Significantly increased expression of lncRNA HIX003209 was observed in the peripheral blood mononuclear cells (PBMCs) from RA cases. It was positively associated with TLR2 and TLR4 in RA. Besides, peptidoglycan (PGN) and lipopolysaccharide (LPS) could enhance the expression of lncRNA HIX003209, which reversely promoted the proliferation and activation of macrophages through IκBα/NF-κB signaling pathway. Moreover, HIX003209 was involved in TLR4-mediated inflammation via targeting miR-6089 in macrophages. LncRNA HIX003209 functions as a ceRNA and exaggerates inflammation by sponging miR-6089 through TLR4/NF-κB pathway in macrophages, which offers promising therapeutic strategies for RA.
Collapse
Affiliation(s)
- Shushan Yan
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Pingping Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Jinghua Wang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jinghan Yang
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongying Lu
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, China.,Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Tan C, Zhang J, Chen W, Feng F, Yu C, Lu X, Lin R, Li Z, Huang Y, Zheng L, Huang M, Wu G. Inflammatory cytokines via up-regulation of aquaporins deteriorated the pathogenesis of early osteoarthritis. PLoS One 2019; 14:e0220846. [PMID: 31404098 PMCID: PMC6690536 DOI: 10.1371/journal.pone.0220846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammatory cytokines enhanced the progress of the pathogenesis of osteoarthritis, however the mechanisms remain unclear. The objective is to determine aquaporins (AQPs) in the pathogenesis of osteoarthritis. METHODS AND FINDINGS Primary rat articular chondrocytes were treated with IL-1β to mimic the early stage of osteoarthritis in vitro. Early osteoarthritis animal model was established by intra-articular injection of 4% papain. Micro- or ultra-structure histopathologic changes, cell viability, apoptosis cells and cell membrane permeability, locations and expressions of AQP1 and AQP3 and matrix were detected in the cartilage or in the chondrocytes of knee. IL-1β could reduce the chondrocytes viability, increase the apoptosis cells, and also impair the cell membrane and organelles. IL-1β significantly induced the up-regulation of AQP1 and AQP3 in the chondrocytes. In the chondrocytes, AQPs were mainly clustered in both membrane and perinuclear region of cytoplasm, while higher AQPs were detected in the superficial and middle layers of the cartilage. With the up-regulation of AQPs, the cartilage matrix was considerably decreased in both the chondrocytes and in the osteoarthritis cartilage. In the early osteoarthritis rat model, serum and synovial fluid confirmed that higher IL-1β could increase the expressions of AQPs, and decrease the cartilage matrix in both the chondrocytes and the cartilage. CONCLUSIONS Inflammatory cytokine IL-1β via up-regulation of AQPs caused the abnormal metabolism of water transport and loss of the cartilage matrix in the chondrocytes, and ultimately exacerbated the pathogenesis of early osteoarthritis. Therefore, AQPs may be a candidate therapeutic target for prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chunjiang Tan
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
| | - Jiahui Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- The First Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Wenlie Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
- National Laboratory of Traditional Chinese Medicine on Pharmacology (Cell Structure and Function), Fuzhou, Fujian, China
| | - Fangfang Feng
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chao Yu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaodong Lu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ruhui Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- National Laboratory of Traditional Chinese Medicine on Pharmacology (Cell Structure and Function), Fuzhou, Fujian, China
| | - Zuanfang Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
| | - Yunmei Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- National Laboratory of Traditional Chinese Medicine on Pharmacology (Cell Structure and Function), Fuzhou, Fujian, China
| | - Liangpu Zheng
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
| | - Meiya Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Academy of Integrative Medicine, Fuzhou, Fujian, China
- National Laboratory of Traditional Chinese Medicine on Pharmacology (Cell Structure and Function), Fuzhou, Fujian, China
| | - Guangwen Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
- National Laboratory of Traditional Chinese Medicine on Pharmacology (Cell Structure and Function), Fuzhou, Fujian, China
| |
Collapse
|
18
|
Wang R, Yang Z, Zhang J, Mu J, Zhou X, Zhao X. Liver Injury Induced by Carbon Tetrachloride in Mice Is Prevented by the Antioxidant Capacity of Anji White Tea Polyphenols. Antioxidants (Basel) 2019; 8:antiox8030064. [PMID: 30875793 PMCID: PMC6466528 DOI: 10.3390/antiox8030064] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Anji white tea is a unique variety of green tea that is rich in polyphenols. In this study, the effect of Anji white tea polyphenols (AJWTP) on the prevention of carbon tetrachloride (CCl₄)-induced liver injury through its antioxidant properties was studied. Biochemical and molecular biology methods were used to analyze the serum and liver tissue of mice. The antioxidant capacity and liver injury preventive effect of AJWTP were determined, and the mechanism was elaborated. The results showed that AJWTP decreased the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), and total cholesterol (TC) in mice with liver injury, it increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the serum and liver tissue of mice with liver injury, and it also decreased the amount of malondialdehyde (MDA). Further quantitative polymerase chain reaction (qPCR) results showed that AJWTP upregulated the mRNA expression of Cu/Zn-SOD, Mn-SOD, catalase (CAT), and nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor alpha (IκB-α) and downregulated the expression of nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) in the liver tissue of mice with liver injury. Therefore, AJWTP produces sufficient antioxidant action to prevent liver injury, and the effect increases with the increase in AJWTP concentration. The effect of 200 mg/kg AJWTP was similar to that of the same concentration of the drug (silymarin) used for the treatment of liver injury. This indicates excellent potential for the development and utilization of AJWTP because it is an active substance with excellent antioxidant effects and can prevent liver injury.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Zhiqing Yang
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing 401228, China.
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
19
|
Pan Y, Long X, Yi R, Zhao X. Polyphenols in Liubao Tea Can Prevent CCl₄-Induced Hepatic Damage in Mice through Its Antioxidant Capacities. Nutrients 2018; 10:nu10091280. [PMID: 30201943 PMCID: PMC6163653 DOI: 10.3390/nu10091280] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/30/2023] Open
Abstract
The present study investigated the preventive effect of polyphenols in Liubao tea (PLT) on carbon tetrachloride (CCl4)-induced liver injury in mice. The mice were initially treated with PLT, followed by induction of liver injury using 10 mL/kg CCl4. Then liver and serum indices, as well as the expression levels of related messenger RNAs (mRNAs) and proteins in liver tissues were measured. The results showed that PLT reduces the liver quality and indices of mice with liver injury. PLT also downregulates aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides (TGs), and malondialdehyde (MDA), and upregulates superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the sera of mice with liver injury. PLT also reduces serum levels of interleukin-6 (IL-6), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) cytokines in mice with liver injury. Pathological morphological observation also shows that PLT reduces CCl4-induced central venous differentiation of liver tissues and liver cell damage. Furthermore, qPCR and Western blot also confirm that PLT upregulates the mRNA and protein expressions of Gu/Zn-SOD, Mn-SOD, catalase (CAT), GSH-Px, and nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α (IκB-α) in liver tissues, and downregulates the expression of cyclooxygenase 2 (COX-2) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). Meanwhile, PLT also raised the phosphorylated (p)-NF-κB p65 and cytochrome P450 reductase protein expression in liver injury mice. The components of PLT include gallic acid, catechin, caffeine, epicatechin (EC), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), and epicatechin gallate (ECG), which possibly have a wide range of biological activities. Thus, PLT imparts preventive effects against CCl4-induced liver injury, which is similar to silymarin.
Collapse
Affiliation(s)
- Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
20
|
Cai L, Chen WN, Li R, Liu MM, Lei C, Li CM, Qiu YY. Acetazolamide protects rat articular chondrocytes from IL-1β-induced apoptosis by inhibiting the activation of NF-κB signal pathway. Can J Physiol Pharmacol 2018; 96:1104-1111. [PMID: 30067070 DOI: 10.1139/cjpp-2018-0334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Because the excessive apoptosis of articular chondrocytes contributes to extracellular matrix (ECM) loss and cartilage damage in rheumatoid arthritis (RA), inhibiting chondrocyte apoptosis might be a promising strategy for RA. Aquaporin1 (AQP1) is overexpressed in RA cartilage and synovial tissues, and play a vital pathogenic role in RA development. Particularly, we previously reported that acetazolamide (AZ) as an AQP1 inhibitor suppressed secondary inflammation and promoted ECM production in cartilage of adjuvant-induced arthritis rats. Here, we investigated the antiapoptotic effect of AZ on interleukin-1β (IL-1β)-induced apoptosis, a classic in vitro model of chondrocyte apoptosis. AZ treatment could inhibit IL-1β-induced apoptosis, evidenced by increasing cell viability, relieving apoptotic nuclear morphology, decreasing apoptosis rates, and restoring mitochondrial membrane potential. Additionally, AZ reversed IL-1β-induced decrease of Bcl-2 protein and reduced IL-1β-induced increases of Bax and caspase 3 protein, accompanied by inhibiting IκBα degradation and phosphorylation in cytoplasm, reducing NF-κB p65 protein level in nucleus and preventing NF-κB p65 translocation from cytoplasm to nucleus. In conclusion, our findings indicated that AZ could effectively attenuate IL-1β-induced chondrocyte apoptosis mediated by regulating the protein levels of apoptosis-related genes and inhibiting the activation of NF-κB signal pathway, suggesting that AZ might be of potential clinical interest in RA treatment.
Collapse
Affiliation(s)
- Li Cai
- a Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Wei-Na Chen
- b School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Rong Li
- b School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China.,c School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long Road, Macau, China
| | - Ming-Ming Liu
- b School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Chao Lei
- b School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Chun-Mei Li
- b School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, China
| | - Yuan-Ye Qiu
- c School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long Road, Macau, China
| |
Collapse
|