1
|
Göksu MR, Gümrükçü Z, Balaban E, Mercantepe T, Gökçe FM. Electrophysiological and histopathological evaluation of the effectiveness of melatonin and glatiramer acetate for traumatic facial nerve injuries. Injury 2024; 55:111719. [PMID: 39003883 DOI: 10.1016/j.injury.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
AIM This study aimed to evaluate the effect of systemic/local use of melatonin and glatiramer acetate on regeneration in traumatic nerve injury models. MATERIALS AND METHODS A total of 42 male Wistar albino rats were randomly divided into 6 groups: healthy control (Group 1), injured control (Group 2), local melatonin (Group 3), systemic melatonin (Group 4), local glatiramer acetate (Group 5), and systemic glatiramer acetate (Group 6). In all groups, electromyography recordings of the facial nerve were obtained after surgery and before sacrifice, and the damaged nerve region was histopathologically examined after sacrifice. RESULTS In the electrophysiological evaluation, the control group had the greatest decrease in amplitude and extension in latency time following surgery than the treatment groups. Furthermore, a significant decrease in the degenerative axon count, edematous areas, and fibrotic areas as well as a significant increase in axonal surface areas was observed in all the treatment groups compared with the damage control group. CONCLUSIONS Although both glatiramer acetate and melatonin are beneficial in regeneration in traumatic facial nerve injuries, it can be concluded that systemic use of melatonin can yield more positive results than glatiramer acetate and local use of both two drugs.
Collapse
Affiliation(s)
| | - Zeynep Gümrükçü
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Emre Balaban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Recep Tayyip Erdoğan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Fatih Mehmet Gökçe
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
2
|
Grijalva-Otero I, Doncel-Pérez E. Traumatic Human Spinal Cord Injury: Are Single Treatments Enough to Solve the Problem? Arch Med Res 2024; 55:102935. [PMID: 38157747 DOI: 10.1016/j.arcmed.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Traumatic spinal cord injury (SCI) results in partial or complete motor deficits, such as paraplegia, tetraplegia, and sphincter control, as well as sensory disturbances and autonomic dysregulation such as arterial hypotension, lack of sweating, and alterations in skin lability. All this has a strong psychological impact on the affected person and his/her family, as well as costs to healthcare institutions with an economic burden in the short, medium, and long terms. Despite at least forty years of experimental animal studies and several clinical trials with different therapeutic strategies, effective therapy is not universally accepted. Most of the published works on acute and chronic injury use a single treatment, such as medication, trophic factor, transplant of a cell type, and so on, to block some secondary injury mechanisms or promote some mechanisms of structural/functional restoration. However, despite significant results in experimental models, the outcome is a moderate improvement in muscle strength, sensation, or eventually in sphincter control, which has been considered non-significant in human clinical trials. Here we present a brief compilation of successful individual treatments that have been applied to secondary mechanisms of action. These studies show limited neuroprotective or neurorestorative approaches in animal models and clinical trials. Thus, the few benefits achieved so far represent a rationale to further explore other strategies that seek better structural and functional restoration of the injured spinal cord.
Collapse
Affiliation(s)
- Israel Grijalva-Otero
- Medical Research Unit for Neurological Diseases, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Ernesto Doncel-Pérez
- Neural Regeneration Group, Hospital Nacional de Parapléjicos de Toledo, Servicios de Salud de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
3
|
Askarifirouzjaei H, Khajoueinejad L, Wei E, Cheruvu S, Ayala C, Chiang N, Theis T, Sun D, Fazeli M, Young W. Sex Differences in Immune Cell Infiltration and Hematuria in SCI-Induced Hemorrhagic Cystitis. PATHOPHYSIOLOGY 2023; 30:275-295. [PMID: 37489403 PMCID: PMC10366728 DOI: 10.3390/pathophysiology30030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023] Open
Abstract
Rats manifest a condition called hemorrhagic cystitis after spinal cord injury (SCI). The mechanism of this condition is unknown, but it is more severe in male rats than in female rats. We assessed the role of sex regarding hemorrhagic cystitis and pathological chronic changes in the bladder. We analyzed the urine of male and female Sprague-Dawley and Fischer 344 rats after experimental spinal cord contusion, including unstained microscopic inspections of the urine, differential white blood cell counts colored by the Wright stain, and total leukocyte counts using fluorescent nuclear stains. We examined bladder histological changes in acute and chronic phases of SCI, using principal component analysis (PCA) and clustered heatmaps of Pearson correlation coefficients to interpret how measured variables correlated with each other. Male rats showed a distinct pattern of macroscopic hematuria after spinal cord injury. They had higher numbers of red blood cells with significantly more leukocytes and neutrophils than female rats, particularly hypersegmented neutrophils. The histological examination of the bladders revealed a distinct line of apoptotic umbrella cells and disrupted bladder vessels early after SCI and progressive pathological changes in multiple bladder layers in the chronic phase. Multivariate analyses indicated immune cell infiltration in the bladder, especially hypersegmented neutrophils, that correlated with red blood cell counts in male rats. Our study highlights a hitherto unreported sex difference of hematuria and pathological changes in males and females' bladders after SCI, suggesting an important role of immune cell infiltration, especially neutrophils, in SCI-induced hemorrhagic cystitis.
Collapse
Affiliation(s)
- Hadi Askarifirouzjaei
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Leila Khajoueinejad
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Elena Wei
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Sruti Cheruvu
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Carlos Ayala
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Ning Chiang
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Dongming Sun
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Mehdi Fazeli
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran
| | - Wise Young
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| |
Collapse
|
4
|
Monroy GR, Murguiondo Pérez R, Weintraub Ben Zión E, Vidal Alcántar-Garibay O, Loza-López EC, Tejerina Marion E, Blancarte Hernández E, Navarro-Torres L, Ibarra A. Immunization with Neural-Derived Peptides in Neurodegenerative Diseases: A Narrative Review. Biomedicines 2023; 11:biomedicines11030919. [PMID: 36979898 PMCID: PMC10046177 DOI: 10.3390/biomedicines11030919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are a major health problem worldwide. Statistics suggest that in America in 2030 there will be more than 12 million people suffering from a neurodegenerative pathology. Furthermore, the increase in life expectancy enhances the importance of finding new and better therapies for these pathologies. NDDs could be classified into chronic or acute, depending on the time required for the development of clinical symptoms and brain degeneration. Nevertheless, both chronic and acute stages share a common immune and inflammatory pathway in their pathophysiology. Immunization with neural-derived peptides (INDP) is a novel therapy that has been studied during the last decade. By inoculating neural-derived peptides obtained from the central nervous system (CNS), this therapy aims to boost protective autoimmunity, an autoreactive response that leads to a protective phenotype that produces a healing environment and neuroregeneration instead of causing damage. INDP has shown promising findings in studies performed either in vitro, in vivo or even in some pre-clinical trials of different NDDs, standing as a potentially beneficial therapy. In this review, we will describe some of the studies in which the effect of INDP strategies have been explored in different (chronic and acute) neurodegenerative diseases.
Collapse
Affiliation(s)
- Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Efraín Weintraub Ben Zión
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Oscar Vidal Alcántar-Garibay
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Ericka Cristina Loza-López
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Emilio Tejerina Marion
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Enrique Blancarte Hernández
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Lisset Navarro-Torres
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan 52786, Mexico
- Neuroimmunology Department, Proyecto CAMINA A.C., Ciudad de México 14370, Mexico
- Correspondence:
| |
Collapse
|
5
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
6
|
Zhang Z, Ma X, Yang G, Zhang L. Cardioprotective Effects of Glatiramer Against Ischemia- Reperfusion Injury in Coronary Artery Ligation Model in Rats Through Activation of AKT-GSK-3β-TNF-α-Nrf2 Signalling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.79.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Palumbo ML, Moroni AD, Quiroga S, Castro MM, Burgueño AL, Genaro AM. Immunomodulation induced by central nervous system-related peptides as a therapeutic strategy for neurodegenerative disorders. Pharmacol Res Perspect 2021; 9:e00795. [PMID: 34609083 PMCID: PMC8491457 DOI: 10.1002/prp2.795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases (NDD) are disorders characterized by the progressive loss of neurons affecting motor, sensory, and/or cognitive functions. The incidence of these diseases is increasing and has a great impact due to their high morbidity and mortality. Unfortunately, current therapeutic strategies only temporarily improve the patients' quality of life but are insufficient for completely alleviating the symptoms. An interaction between the immune system and the central nervous system (CNS) is widely associated with neuronal damage in NDD. Usually, immune cell infiltration has been identified with inflammation and is considered harmful to the injured CNS. However, the immune system has a crucial role in the protection and regeneration of the injured CNS. Nowadays, there is a consensus that deregulation of immune homeostasis may represent one of the key initial steps in NDD. Dr. Michal Schwartz originally conceived the concept of "protective autoimmunity" (PA) as a well-controlled peripheral inflammatory reaction after injury, essential for neuroprotection and regeneration. Several studies suggested that immunizing with a weaker version of the neural self-antigen would generate PA without degenerative autoimmunity. The development of CNS-related peptides with immunomodulatory neuroprotective effect led to important research to evaluate their use in chronic and acute NDD. In this review, we refer to the role of PA and the potential applications of active immunization as a therapeutic option for NDD treatment. In particular, we focus on the experimental and clinical promissory findings for CNS-related peptides with beneficial immunomodulatory effects.
Collapse
Affiliation(s)
- María Laura Palumbo
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Alejandro David Moroni
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Sofía Quiroga
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| | - María Micaela Castro
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA)‐UNNOBA‐UNsADA‐CONICETJunínArgentina
| | - Adriana Laura Burgueño
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| | - Ana María Genaro
- Instituto de Investigaciones BiomédicasConsejo Nacional de Investigaciones Científicas y Técnicas (CONICETPontificia Universidad Católica ArgentinaBuenos AiresArgentina
| |
Collapse
|
8
|
Person JM, Welch BA, Spann RA, Harris KK, Pride Y, Tucci MA, Taylor EB, Grayson BE. Immuno-hematologic parameters following rodent spinal cord contusion are negatively influenced by high-fat diet consumption. J Neuroimmunol 2020; 343:577226. [PMID: 32247229 DOI: 10.1016/j.jneuroim.2020.577226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) results in perturbations to the immune system leading to increased infection susceptibility. In parallel, the consumption of high-fat diets (HFD) leads to a chronic inflammation in circulation and body tissues. We investigated the impact of 16 weeks of HFD on chronically-injured rats. SCI rats under both chow and HFD showed peripheral leukocyte changes that include reduced percentages of total, helper and cytotoxic T, and natural killer cells. Expression of immune-related genes in the spleen and thymus reflected the impact of both chronic injury and diet. Changes to the immune system following SCI are adversely impacted by HFD consumption.
Collapse
Affiliation(s)
- Jon M Person
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Redin A Spann
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Kwamie K Harris
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Yilianys Pride
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Michelle A Tucci
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|