1
|
Tjiptaningrum A, Kurniati I, Fadilah F, Susantiningsih T, Prawiningrum AF, Utari WD, Erlina L. Protein Interaction Analysis and Molecular Simulation of the Anti-Inflammatory Activities in Melaleuca cajuputi Extract Against COVID-19. Int J Inflam 2024; 2024:5568294. [PMID: 39640429 PMCID: PMC11620808 DOI: 10.1155/ijin/5568294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 12/07/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) is correlated to a severe condition caused by a cytokine storm during which numerous proinflammatory cytokines, including interleukin-6 (IL-6) are released. IL-6 is a critical driver in the COVID-19 inflammatory state, and the inhibition is considered a potential treatment approach to prevent serious complications. Meanwhile, Melaleuca cajuputi is a plant with antibacterial, antiviral, anti-inflammatory, and antioxidant activities. Therefore, this aimed to investigate the anti-inflammatory potential of M. cajuputi in silico. Extraction of leaves was conducted by using 96% ethanol, followed by fractionation to obtain active compounds. Subsequently, LC/MS and GC/MS analyses were performed to obtain active compound profiling. Protein-protein interaction (PPI), as well as molecular docking and dynamic analyses, were performed to examine interaction of active compounds of M. cajuputi with IL-6. The results showed that 30 protein nodes played a significant role in COVID-19 cytokine storm and eight active compounds had interactions with IL-6. Among the active compounds, pinostrobin chalcone had the best delta G interaction with IL-6. In conclusion, M. cajuputi has potential activity as an anti-inflammatory agent against COVID-19.
Collapse
Affiliation(s)
- Agustyas Tjiptaningrum
- Doctoral Program of Biomedical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Clinical Pathology of University of Lampung, Bandar Lampung, Indonesia
| | - Intanri Kurniati
- Department of Clinical Pathology of University of Lampung, Bandar Lampung, Indonesia
| | - Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Tiwuk Susantiningsih
- Doctoral Program of Biomedical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Aisyah Fitriannisa Prawiningrum
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Wahyu Dian Utari
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Linda Erlina
- Doctoral Program of Biomedical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Navarini L, Vomero M, Currado D, Berardicurti O, Biaggi A, Marino A, Bearzi P, Corberi E, Rigon A, Arcarese L, Leuti A, Fava M, Fogolari M, Mattei A, Ruscitti P, Di Cola I, Sambuco F, Travaglino F, Angeletti S, Ursini F, Mariani E, Cipriani P, Agrò FE, Iagnocco A, Antonelli Incalzi R, Maccarrone M, Giacomelli R. The specialized pro-resolving lipid mediator Protectin D1 affects macrophages differentiation and activity in Adult-onset Still's disease and COVID-19, two hyperinflammatory diseases sharing similar transcriptomic profiles. Front Immunol 2023; 14:1148268. [PMID: 37153620 PMCID: PMC10160453 DOI: 10.3389/fimmu.2023.1148268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1β from M2 macrophages was observed when compared to controls (p<0.05). Discussion PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1β production.
Collapse
Affiliation(s)
- Luca Navarini
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
- *Correspondence: Luca Navarini,
| | - Marta Vomero
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Damiano Currado
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Onorina Berardicurti
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Alice Biaggi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Annalisa Marino
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Pietro Bearzi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Erika Corberi
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| | - Amelia Rigon
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Luisa Arcarese
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Leuti
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marina Fava
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Marta Fogolari
- Operative Research Unit of Clinical Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Laboratory Science, Department of Medicine, University of Rome “Campus Biomedico”, Rome, Italy
| | - Alessia Mattei
- Operative Research Unit of Anaesthesia, Intensive Care and Pain Management, Fondazione Policiclinico Campus Biomedico, Rome, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Ilenia Di Cola
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Federica Sambuco
- Emergency Department, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Francesco Travaglino
- Emergency Department, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Silvia Angeletti
- Operative Research Unit of Clinical Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Laboratory Science, Department of Medicine, University of Rome “Campus Biomedico”, Rome, Italy
| | - Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Erminia Mariani
- Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Cipriani
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Felice Eugenio Agrò
- Operative Research Unit of Anaesthesia, Intensive Care and Pain Management, Fondazione Policiclinico Campus Biomedico, Rome, Italy
- Research Unit of Anaesthesia, Intensive Care and Pain Management, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Annamaria Iagnocco
- Academic Rheumatology Centre - AO Mauriziano Torino, Cattedra di Reumatologia - Dipartimento Scienze Cliniche e Biologiche, Università degli Studi di Torino, Turin, Italy
| | - Raffaele Antonelli Incalzi
- Unit of Geriatrics, University of Rome “Campus Biomedico”, Rome, Italy
- Internal Medicine, Fondazione Policlinico Campus Biomedico, Rome, Italy
| | - Mauro Maccarrone
- Neurochemistry of Lipids Unit, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome “Campus Bio-Medico”, School of Medicine, Rome, Italy
| |
Collapse
|
3
|
Landoni G, Zangrillo A, Piersanti G, Scquizzato T, Piemonti L. The effect of reparixin on survival in patients at high risk for in-hospital mortality: a meta-analysis of randomized trials. Front Immunol 2022; 13:932251. [PMID: 35958623 PMCID: PMC9358031 DOI: 10.3389/fimmu.2022.932251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction A great number of anti-inflammatory drugs have been suggested in the treatment of SARS-CoV-2 infection. Reparixin, a non-competitive allosteric inhibitor of the CXCL8 (IL-8) receptors C-X-C chemokine receptor type 1 (CXCR1) and C-X-C chemokine receptor type 2 (CXCR2), has already been tried out as a treatment in different critical settings. Due to the contrasting existing literature, we decided to perform the present meta-analysis of randomized controlled trials (RCTs) to investigate the effect of the use of reparixin on survival in patients at high risk for in-hospital mortality. Methods We created a search strategy to include any human RCTs performed with reparixin utilization in patients at high risk for in-hospital mortality, excluding oncological patients. Two trained, independent authors searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) for appropriate studies. Furthermore, references of review articles and included RCTs were screened to identify more studies. No language restrictions were enforced. To assess the risk of bias of included trials, the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) was used. Results Overall, six studies were included and involved 406 patients (220 received reparixin and 186 received the comparator). The all-cause mortality in the reparixin group was significantly lower than that in the control group [5/220 (2.3%) in the reparixin group vs. 12/186 (6.5%) in the control group, odds ratio = 0.33 (95% confidence interval 0.12 to 0.96), p-value for effect 0.04, p for heterogeneity 0.20, I2 = 36%]. In addition, no difference in the rate of pneumonia, sepsis, or non-serious infections was shown between the two groups. Conclusion Our meta-analysis of randomized trials suggests that short-term inhibition of CXCL8 activity improved survival in patients at high risk for in-hospital mortality without increasing the risk of infection. Meta-analysis registration PROSPERO, identifier CRD42021254467.
Collapse
Affiliation(s)
- Giovanni Landoni
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Gioia Piersanti
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Scquizzato
- Department of Anesthesia and Intensive Care, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|