1
|
Vivier B, Faucheux-Bourlot C, Orvain F, Chasselin L, Jolly O, Navon M, Boutouil M, Goux D, Dauvin JC, Claquin P. Influence of nutrient enrichment on colonisation and photosynthetic parameters of hard substrate marine microphytobenthos. BIOFOULING 2023; 39:730-747. [PMID: 37781891 DOI: 10.1080/08927014.2023.2261852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
This study aimed to assess the influence of nutrient enrichment on the development of microalgal biofilm on concrete and PVC cubes. Three mesocosms were utilized to create a nutrient gradient over a period of 28 days. Various parameters including biomass, photosynthetic activity, microtopography, and extracellular polymeric substances (EPS) were measured. Imaging PAM techniques were employed to obtain surface-wide data. Results revealed that nutrient availability had no significant impact on Chl a biomass and the maximum quantum efficiency of PSII (F v /F m ). The photosynthetic capacity and efficiency were minimally affected by nutrient availability. Interestingly, the relationship between microphytobenthic (MPB) biomass and photosynthesis and surface rugosity exhibited distinct patterns. Negative reliefs showed a strong correlation with F v /F m , while no clear pattern emerged for biomass on rough concrete structures. Overall, our findings demonstrate that under conditions of heightened eutrophication, biofilm photosynthesis thrives in the fissures and crevasses of colonized structures regardless of nutrient levels. This investigation provides valuable insights into the interplay between nutrient availability and surface rugosity.
Collapse
Affiliation(s)
- Baptiste Vivier
- Normandie Université, Université de Caen Normandie, Caen, France
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles. Centre de Recherches en Environnement Côtier (CREC) - Station Marine, Luc-sur-Mer, France
- HOLCIM Innovation Center, 95 rue du Montmurier, 38070 Saint-Quentin-Fallavier, France
| | - Caroline Faucheux-Bourlot
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles. Centre de Recherches en Environnement Côtier (CREC) - Station Marine, Luc-sur-Mer, France
| | - Francis Orvain
- Normandie Université, Université de Caen Normandie, Caen, France
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles. Centre de Recherches en Environnement Côtier (CREC) - Station Marine, Luc-sur-Mer, France
| | - Léo Chasselin
- Normandie Université, Université de Caen Normandie, Caen, France
| | - Orianne Jolly
- Normandie Université, Université de Caen Normandie, Caen, France
| | - Maxime Navon
- Normandie Université, Université de Caen Normandie, Caen, France
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles. Centre de Recherches en Environnement Côtier (CREC) - Station Marine, Luc-sur-Mer, France
| | | | - Didier Goux
- Centre de Microscopie Appliquée à la Biologie, SF 4206 Interaction Cellule-Organisme-Environnement (ICORE), UNICAEN; and CRISMAT, Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, Caen, France
| | - Jean-Claude Dauvin
- Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, Normandie Université, Université de Caen Normandie, UNIROUEN, Caen, France
| | - Pascal Claquin
- Normandie Université, Université de Caen Normandie, Caen, France
- Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles. Centre de Recherches en Environnement Côtier (CREC) - Station Marine, Luc-sur-Mer, France
| |
Collapse
|
2
|
Wang Q, Lin W, Chou S, Dai P, Huang X. Patterned membranes for improving hydrodynamic properties and mitigating membrane fouling in water treatment: A review. WATER RESEARCH 2023; 236:119943. [PMID: 37054608 DOI: 10.1016/j.watres.2023.119943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Membrane technologies have been widely applied in water treatment over the past few decades. However, membrane fouling remains a hinderance for the widespread use of membrane processes because it decreases effluent quality and increases operating costs. To mitigate membrane fouling, researchers have been exploring effective anti-fouling strategies. Recently, patterned membranes are gaining attention as a novel non-chemical membrane modification for membrane fouling control. In this paper, we review the research on patterned membranes used in water treatment over the past 20 years. In general, patterned membranes show superior anti-fouling performances, which mainly results from two aspects: hydrodynamic effects and interaction effects. Due to the introduction of diversified topographies onto the membrane surface, patterned membranes yield dramatic improvements on hydrodynamic properties, e.g., shear stress, velocity field and local turbulence, restraining concentration polarization and foulants' deposition on the membrane surface. Besides, the membrane-foulant and foulant-foulant interactions play an important role in the mitigation of membrane fouling. Due to the existence of surface patterns, the hydrodynamic boundary layer is destroyed and the interaction force as well as the contact area between foulants and surface are decreased, which contributes to the fouling suppression. However, there are still some limitations in the research and application of patterned membranes. Future research is suggested to focus on the development of patterned membranes appropriate for different water treatment scenarios, the insights into the interaction forces affected by surface patterns, and the pilot-scale and long-term studies to verify the anti-fouling performances of patterned membranes in practical applications.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shuren Chou
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Pan Dai
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101407, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Bing W, Jin E, Tian L, Jin H, Liu Z. Construction and application of bionic antifouling coatings inspired by soft coral. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wei Bing
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- School of Chemistry and Life Science Changchun University of Technology Changchun China
| | - E. Jin
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- College of Mechanical and Electrical Engineering Henan Agricultural University Zhengzhou China
| | - Limei Tian
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionics‐Jilin University Weihai China
| | - Huichao Jin
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Zhuo Liu
- Department of the Lymphatic and Vascular Surgery Key Laboratory of Lymphatic Surgery Jilin Province China‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
4
|
Romero M, Carabelli A, Swift M, Smith M. Fluid dynamics and cell‐bound Psl polysaccharide allows microplastic capture, aggregation and subsequent sedimentation by
Pseudomonas aeruginosa
in water. Environ Microbiol 2022; 24:1560-1572. [PMID: 35049126 PMCID: PMC9305584 DOI: 10.1111/1462-2920.15916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Decades after incorporating plastics into consumer markets, research shows that these polymers have spread worldwide. Fragmentation of large debris leads to smaller particles, collectively called microplastics (MPs), which have become ubiquitous in aquatic environments. A fundamental aspect of understanding the implications of MP contamination on ecosystems is resolving the complex interactions of these artificial substrates with microbial cells. Using polystyrene microparticles as model polymers, we conducted an exploratory study where these interactions are quantitatively analyzed using an in vitro system consisting of single‐bacterial species capturing and aggregating MPs in water. Here we show that the production of Psl exopolysaccharide by Pseudomonas aeruginosa (PA) does not alter MPs colloidal stability but plays a key role in microspheres adhesion to the cell surface. Further aggregation of MPs by PA cells depends on bacterial mobility and the presence of sufficient flow to prevent rapid sedimentation of early MP‐PA assembles. Surprisingly, cells in MP‐PA aggregates are not in a sessile state despite the production of Psl, enhancing the motility of the aggregates by an order of magnitude relative to passive diffusion. The generated data could inform the creation of predictive models that accurately describe the dynamics and influence of bacterial growth on plastics debris.
Collapse
Affiliation(s)
- M. Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences University of Nottingham Nottingham UK
| | - A. Carabelli
- Department of Medicine University of Cambridge Cambridge UK
| | - M.R. Swift
- School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
| | - M.I. Smith
- School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
5
|
Three-Dimensional Numerical Simulations and Antifouling Mechanism of Microorganisms on Microstructured Surfaces. Processes (Basel) 2021. [DOI: 10.3390/pr9020319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As marine biofouling seriously affects the development and utilization of oceans, the antifouling technology of microstructured surface has become a research hotspot due to its green and environmentally friendly advantages. In the present research, the motion models of microorganisms on the surfaces of five rectangular micropits, in co-current and counter-current flow direction, were established. Dynamic mesh technology was used to simulate the movements of microorganisms with different radii in the near-wall area, and the fluid kinematics and shear stress distributions in different-sized micropits were compared. Furthermore, moving microorganisms were included in the three-dimensional microstructure model to achieve the real situation of biofouling. Simulation results revealed that the vortex flow velocity in the micropits increased with the increase of the inlet flow velocity and the existence of the vortex flow effectively reduced the formation of conditioning layers in the micropits. In the downstream and countercurrent directions, the average shear stresses on the wall decreased with the increase of the micropit depth and width, and the shear stress on the inner wall of the Mp1 micropit (a patterned surface arranged with cubes of 2 µm × 2 µm × 2 µm) was found to be the largest. A low shear stress region with a low flow velocity was formed around microorganisms in the process of approaching the microstructured surface. The shear stress gradient of micro-ridge steps increased with the approach of microorganisms, indicating that microridge edges had a better effect on reducing microbial attachment.
Collapse
|
6
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
7
|
Richards C, Slaimi A, O’Connor NE, Barrett A, Kwiatkowska S, Regan F. Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. Int J Mol Sci 2020; 21:ijms21145063. [PMID: 32709068 PMCID: PMC7404281 DOI: 10.3390/ijms21145063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023] Open
Abstract
The imitation of natural systems to produce effective antifouling materials is often referred to as “biomimetics”. The world of biomimetics is a multidisciplinary one, needing careful understanding of “biological structures”, processes and principles of various organisms found in nature and based on this, designing nanodevices and nanomaterials that are of commercial interest to industry. Looking to the marine environment for bioinspired surfaces offers researchers a wealth of topographies to explore. Particular attention has been given to the evaluation of textures based on marine organisms tested in either the laboratory or the field. The findings of the review relate to the numbers of studies on textured surfaces demonstrating antifouling potential which are significant. However, many of these are only tested in the laboratory, where it is acknowledged a very different response to fouling is observed.
Collapse
Affiliation(s)
- Chloe Richards
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Asma Slaimi
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Noel E. O’Connor
- Insight Centre for Data Analytics, Dublin City University, Dublin 9, Ireland; (A.S.); (N.E.O.)
| | - Alan Barrett
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Sandra Kwiatkowska
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland; (C.R.); (A.B.); (S.K.)
- Correspondence:
| |
Collapse
|
8
|
Li Y, Wang G, Guo Z, Wang P, Wang A. Preparation of Microcapsules Coating and the Study of Their Bionic Anti-Fouling Performance. MATERIALS 2020; 13:ma13071669. [PMID: 32260157 PMCID: PMC7178335 DOI: 10.3390/ma13071669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
With the increasing demands to better the marine environment, environmentally friendly anti-fouling coatings have attracted attention from society. Adding hydrolyzable microcapsules without toxin to paints is a very useful and safe method to get bionic anti-fouling coatings with a micro-nano surface structure. Based on this trend, a form of environment-friendly microcapsules were prepared through mini-emulsion polymerization. The target microcapsules had a poly(urea-formaldehyde) (PUF) shell and a mixed core of silicone oil and capsaicin. Additionally, the microcapsules were introduced into zinc acrylate resin to obtain bionic anti-fouling coatings with micro-nano morphology. The effects of polyvinyl alcohol (PVA) molecular weight, stirring rate, and temperature on the morphology of the microcapsules were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that spherical nanoparticles with smooth surfaces were obtained, and the mean diameter was approximately 1.38 μm when the molecular weight of PVA was 77 K, the stirring rate was 600 rpm and the temperature was 55 °C. Fourier-transform infrared spectra (FTIR) results showed that the silicone oil and capsaicin were successfully encapsulated, the core materials of the microcapsules reached 72.37% and the yield of microcapsules was 68.91% by the Soxhlet method. Furthermore, the hydrophobicity, corrosion resistance and anti-fouling performance of the coatings were evaluated by the water contact angle, electrochemical and real-sea tests. The results indicated that the anti-fouling coatings had excellent hydrophobicity and anti-fouling performance due to the micro-nano convex structure and the release of core materials. Encouragingly, the anti-fouling coatings show excellent and long-term anti-fouling performance, which is expected to be widely applied in marine anti-fouling coatings.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials science and Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China; (Y.L.); (Z.G.); (A.W.)
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, China
| | - Guoqing Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials science and Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China; (Y.L.); (Z.G.); (A.W.)
- Correspondence: ; Tel.: +86-898-31670103
| | - Zehui Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials science and Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China; (Y.L.); (Z.G.); (A.W.)
| | - Peiqing Wang
- Sichuan Sunvea New Materials Co., Ltd., Guangan 638500, China;
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials science and Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China; (Y.L.); (Z.G.); (A.W.)
| |
Collapse
|
9
|
Structural tailoring of sharkskin-mimetic patterned reverse osmosis membranes for optimizing biofouling resistance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117602] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Kuliasha CA, Fedderwitz RL, Finlay JA, Franco SC, Clare AS, Brennan AB. Engineered Chemical Nanotopographies: Reversible Addition-Fragmentation Chain-Transfer Mediated Grafting of Anisotropic Poly(acrylamide) Patterns on Poly(dimethylsiloxane) To Modulate Marine Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:379-387. [PMID: 31829633 DOI: 10.1021/acs.langmuir.9b03117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effectively negating the deleterious impact of marine biofouling on the world's maritime fleet in an environmentally conscientious manner presents a difficult challenge due to a variety of factors including the complexity and diversity of fouling species and the differing surface adhesion strategies. Understanding how surface properties relate to biofouling can inform and guide the development of new antibiofouling coatings to address this challenge. Herein, we report on the development of a living photopolymerization strategy used to tailor the surface properties of silicone rubber using controlled anisotropic poly(acrylamide) patterns and the resulting antibiofouling efficacy of these surfaces against zoospores of the model marine fouling organism, Ulva linza. Chemical patterns were fabricated using reversible addition-fragmentation chain-transfer (RAFT) living polymerization in conjunction with photolithography. Pattern geometries were inspired by the physical (i.e., nonchemical) Sharklet engineered microtopography system that has been shown to be effective against the same model organism. Sharklet chemical patterns and analogous parallel channels were fabricated in sizes ranging from 2 to 10 μm in the lateral dimension with tailorable feature heights ranging from tens to hundreds of nanometers. Nonpatterned, chemically grafted poly(acrylamide) silicone surfaces inhibited algal spore attachment density by 59% compared to the silicone control; however, attachment density on chemical nanotopographies was not statistically different from the control. While these results indicate that the chemical nanotopographies chosen do not represent an effective antibiofouling coating, it was found that the Sharklet pattern geometry, when sized below the 5 μm critical attachment size of the spores, significantly reduced the algal spore density compared to the equally sized channel geometry. These results indicate that specific chemical geometry of the proper sizing can impact the behavior of the algal spores and could be used to further study the mechanistic behavior of biofouling organisms.
Collapse
Affiliation(s)
- Cary A Kuliasha
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Rebecca L Fedderwitz
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - John A Finlay
- School of Natural and Environmental Sciences , Newcastle University , Newcastle-upon-Tyne , NE1 7RU , U.K
| | - Sofia C Franco
- School of Natural and Environmental Sciences , Newcastle University , Newcastle-upon-Tyne , NE1 7RU , U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences , Newcastle University , Newcastle-upon-Tyne , NE1 7RU , U.K
| | - Anthony B Brennan
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
11
|
Cao Z, Gan T, Xu G, Ma C. Biomimetic Self-Renewal Polymer Brushes with Protein Resistance Inspired by Fish Skin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14596-14602. [PMID: 31609120 DOI: 10.1021/acs.langmuir.9b02838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by fish skin, biomimetic self-renewal poly[(ethylene oxide)-co-(ethylene carbonate)] (PEOC) brushes with protein resistance had been prepared via surface-initiated ring-opening polymerization (ROP). The results of hydrolytic degradation indicated that the PEOC brushes could degrade in artificial seawater. Ellipsometry, X-ray photoelectron spectrometry, and contact angle results demonstrated that the PEOC brushes degrade uniformly. By using a quartz crystal microbalance with dissipation, we studied the protein adsorption on the surfaces in artificial seawater at different degradation times. After 24, 48, 96, and 168 h of degradation, the PEOC surfaces showed nearly zero Δf and ΔD for bovine serum albumin, lysozyme, and fibrinogen. More importantly, there was a notably lower density of microorganisms adhered to the surface modified with PEOC compared with that of the surface without PEOC in natural seawater. The current study showed that the PEOC brushes exhibit a self-renewal property with persistent protein resistance and prevent the adhesion of microorganisms. Such a biomimetic polymer had a great potential in marine antibiofouling.
Collapse
Affiliation(s)
- Zhonglin Cao
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Tiansheng Gan
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
12
|
Hoang TX, Mai HTH, Brennan AB, Le L. Effects of inter-organism interactions in biofouling on microtopographic surfaces. BIOFOULING 2019; 35:684-695. [PMID: 31429598 DOI: 10.1080/08927014.2019.1650918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
An extended model of the surface energetic attachment (SEA) model is introduced to study the fouling of marine organisms on microtopographic surfaces, taking into account the excluded volume interaction and the attraction between the organisms. It is shown that the excluded volume interaction leads to changes in the site-typed attachment probabilities which increase with the average spore density on the surface. As a result of these changes, the spore density map is flattened under very high density fouling. The attractive interaction on the other hand leads to aggregation of spores and the average aggregate size increased with the strength of attraction. The model can be mapped to a specific experiment to determine the attachment energy parameters. In contrast to various prior empirical approaches, the extended SEA model is rigorous from the statistical mechanics viewpoint, thus it provides a reliable tool for studying complex attachment behaviors of microorganisms on topographic surfaces.
Collapse
Affiliation(s)
- Trinh X Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, Ba Dinh, Ha Noi, Vietnam
- Physics Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Cau Giay, Ha Noi, Vietnam
| | - Ha T H Mai
- Institute for Environmental and Transport Studies, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
| | - Anthony B Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Li Y, Chen R, Feng Y, Sun X, Tang L, Takahashi K, Liu P, Wang J. Synthesis of Amphiphilic Acrylate Boron Fluorinated Polymers with Antifouling Behavior. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Rongrong Chen
- HIT (Hainan) Military-Civilian Integration Innovation
Research Institute Co., Ltd., Hainan 572427, China
| | - YanHua Feng
- Qingdao Advanced Marine Material
Technology Co., Ltd., Qingdao 266100, China
| | | | | | | | - Peili Liu
- HIT (Hainan) Military-Civilian Integration Innovation
Research Institute Co., Ltd., Hainan 572427, China
| | | |
Collapse
|
14
|
Structure and antibacterial properties of Ag-doped micropattern surfaces produced by photolithography method. Colloids Surf B Biointerfaces 2019; 173:719-724. [DOI: 10.1016/j.colsurfb.2018.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022]
|
15
|
Parallelized microfluidic diatom accumulation assay to test fouling-release coatings. Biointerphases 2018; 13:041007. [PMID: 30021446 DOI: 10.1116/1.5034090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Assessing the efficiency of the next generation of protective marine coatings is highly relevant for their optimization. In this paper, a parallelized microfluidic testing device is presented to quantify the accumulation of a model organism (Navicula perminuta) under constant laminar flow. Using automated microscopy in conjunction with image analysis, the adhesion densities on the tested surfaces could be determined after exposure to a flow of suspended algae for 90 min. The optimized protocol for the assay is presented, and the reproducibility of the densities of attached diatoms was verified on four identical surfaces (self-assembled dodecanethiol monolayers). A set of well-characterized self-assembled monolayers with different chemical terminations was used to validate the performance of the assay and its capability to discriminate diatom accumulation on different surface chemistries under dynamic conditions. The observed trends are in good agreement with previously published results obtained in single channel accumulation and detachment assays. To demonstrate the practical relevance of the dynamic experiment, diatom attachment on four technically relevant silicone coatings with different fouling-release properties could clearly be distinguished.
Collapse
|
16
|
Rigo S, Cai C, Gunkel‐Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG. Nanoscience-Based Strategies to Engineer Antimicrobial Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700892. [PMID: 29876216 PMCID: PMC5979626 DOI: 10.1002/advs.201700892] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Microbial contamination and biofilm formation of medical devices is a major issue associated with medical complications and increased costs. Consequently, there is a growing need for novel strategies and exploitation of nanoscience-based technologies to reduce the interaction of bacteria and microbes with synthetic surfaces. This article focuses on surfaces that are nanostructured, have functional coatings, and generate or release antimicrobial compounds, including "smart surfaces" producing antibiotics on demand. Key requirements for successful antimicrobial surfaces including biocompatibility, mechanical stability, durability, and efficiency are discussed and illustrated with examples of the recent literature. Various nanoscience-based technologies are described along with new concepts, their advantages, and remaining open questions. Although at an early stage of research, nanoscience-based strategies for creating antimicrobial surfaces have the advantage of acting at the molecular level, potentially making them more efficient under specific conditions. Moreover, the interface can be fine tuned and specific interactions that depend on the location of the device can be addressed. Finally, remaining important challenges are identified: improvement of the efficacy for long-term use, extension of the application range to a large spectrum of bacteria, standardized evaluation assays, and combination of passive and active approaches in a single surface to produce multifunctional surfaces.
Collapse
Affiliation(s)
- Serena Rigo
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Chao Cai
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | | | - Lionel Maurizi
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Xiaoyan Zhang
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| | - Jian Xu
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesZhongguangcun North First Street 2100190BeijingP. R. China
| | - Cornelia G. Palivan
- Chemistry DepartmentUniversity of BaselMattenstrasse 24a4058BaselSwitzerland
| |
Collapse
|
17
|
Nolte KA, Koc J, Barros JM, Hunsucker K, Schultz MP, Swain GW, Rosenhahn A. Dynamic field testing of coating chemistry candidates by a rotating disk system. BIOFOULING 2018; 34:398-409. [PMID: 29734815 DOI: 10.1080/08927014.2018.1459578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Quick and reliable testing is crucial for the development of new fouling release (FR) coatings. Exposure of these coatings to natural multispecies communities is essential in evaluating their efficacy. To this end, we present a rotating disk setup for dynamic field exposure. To achieve a well-defined flow on the surface of the disk, an easy to use sample mounting system was developed that provides a smooth and even surface. We related the angular velocity of the disk to the wall shear stress on the surface with a hydrodynamic model. The wall shear stress was adjusted to values previously found to be suitable to discriminate dynamic diatom attachment on different coating chemistries in the lab. The effect of the dynamic conditions was shown by comparing polystyrene slides under static and dynamic exposure. Using a set of self-assembled monolayers, the discrimination potential of the assay in a multispecies environment was demonstrated.
Collapse
Affiliation(s)
- Kim A Nolte
- a Analytical Chemistry-Biointerfaces , Ruhr-Universität Bochum , Bochum , Germany
| | - Julian Koc
- a Analytical Chemistry-Biointerfaces , Ruhr-Universität Bochum , Bochum , Germany
| | - J M Barros
- b Naval Architecture & Ocean Engineering , United States Naval Academy , Annapolis , MD , USA
| | - Kelli Hunsucker
- c Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Michael P Schultz
- b Naval Architecture & Ocean Engineering , United States Naval Academy , Annapolis , MD , USA
| | - G W Swain
- c Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Axel Rosenhahn
- a Analytical Chemistry-Biointerfaces , Ruhr-Universität Bochum , Bochum , Germany
| |
Collapse
|
18
|
|
19
|
Xiao L, Finlay JA, Röhrig M, Mieszkin S, Worgull M, Hölscher H, Callow JA, Callow ME, Grunze M, Rosenhahn A. Topographic cues guide the attachment of diatom cells and algal zoospores. BIOFOULING 2018; 34:86-97. [PMID: 29283000 DOI: 10.1080/08927014.2017.1408801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Surface topography plays a key role in the colonization of substrata by the colonizing stages of marine fouling organisms. For the innovation of marine antifouling coatings, it is essential to understand how topographic cues affect the settlement of these organisms. In this study, tapered, spiked microstructures and discrete honeycombs of varying feature dimensions were designed and fabricated in order to examine the influence of topography on the attachment of zoospores of the green macroalga Ulva linza and cells of the diatom (microalga) Navicula incerta. Contrasting results were obtained with these two species of algae. Indeed, the preferred location of cells of N. incerta was dominated by attachment point theory, which suggested a positive correlation between the density of cells adhering and the amount of available attachment points, while the settlement of spores of U. linza was mainly regulated by both Wenzel roughness and local binding geometry.
Collapse
Affiliation(s)
- Linlin Xiao
- a Applied Physical Chemistry , Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
- b Institute of Functional Interfaces , Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - John A Finlay
- c School of Biosciences , University of Birmingham , Birmingham , United Kingdom
| | - Michael Röhrig
- d Institute of Microstructure Technology , Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Sophie Mieszkin
- c School of Biosciences , University of Birmingham , Birmingham , United Kingdom
| | - Matthias Worgull
- d Institute of Microstructure Technology , Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Hendrik Hölscher
- d Institute of Microstructure Technology , Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - James A Callow
- c School of Biosciences , University of Birmingham , Birmingham , United Kingdom
| | - Maureen E Callow
- c School of Biosciences , University of Birmingham , Birmingham , United Kingdom
| | - Michael Grunze
- a Applied Physical Chemistry , Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
- b Institute of Functional Interfaces , Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Axel Rosenhahn
- a Applied Physical Chemistry , Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
- b Institute of Functional Interfaces , Karlsruhe Institute of Technology , Karlsruhe , Germany
- e Analytical Chemistry - Biointerfaces , Ruhr-University Bochum , Bochum , Germany
| |
Collapse
|
20
|
Li Y, Chen R, Feng Y, Liu L, Sun X, Tang L, Takahashi K, Wang J. Antifouling behavior of self-renewal acrylate boron polymers with pyridine-diphenylborane side chains. NEW J CHEM 2018. [DOI: 10.1039/c8nj04298e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The environmentally friendly polymers showed excellent antifouling performances in raft tests by the hydrolysis of diphenyl borane pyridine side groups.
Collapse
Affiliation(s)
- Yakun Li
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
- Institute of Advanced Marine Materials
| | - Rongrong Chen
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
- Institute of Advanced Marine Materials
| | - YanHua Feng
- Qingdao Advanced Marine Material Technology Co., Ltd
- Qingdao
- China
| | - Lianhe Liu
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
- Qingdao Advanced Marine Material Technology Co., Ltd
| | - Xun Sun
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
| | - Liang Tang
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
| | - Kazunobu Takahashi
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- China
| |
Collapse
|
21
|
Nolte KA, Schwarze J, Rosenhahn A. Microfluidic accumulation assay probes attachment of biofilm forming diatom cells. BIOFOULING 2017; 33:531-543. [PMID: 28675050 DOI: 10.1080/08927014.2017.1328058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Testing of fouling release (FR) technologies is of great relevance for discovery of the next generation of protective marine coatings. In this paper, an accumulation assay to test diatom interaction under laminar flow with the model organism Navicula perminuta is introduced. Using time lapse microscopy with large area sampling allows determination of the accumulation kinetics of the diatom on three model surfaces with different surface properties at different wall shear stresses. The hydrodynamic conditions within the flow cell are described and a suitable shear stress range to perform accumulation experiments is identified at which statistically significant discrimination of surfaces is possible. The observed trends compare well to published adhesion preferences of N. perminuta. Also, previously determined trends of critical wall shear stresses required for cell removal from the same set of functionalized interfaces shows consistent trends. Initial attachment mediated by extracellular polymeric substances (EPS) present outside the diatoms leads to the conclusion that the FR potential of the tested coating candidates can be deducted from dynamic accumulation experiments under well-defined hydrodynamic conditions. As well as testing new coating candidates for their FR properties, monitoring of the adhesion process under flow provides additional information on the mechanism and geometry of attachment and the population kinetics.
Collapse
Affiliation(s)
- Kim A Nolte
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| | - Jana Schwarze
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| | - Axel Rosenhahn
- a Analytical Chemistry - Biointerfaces , Ruhr- Universität Bochum , Bochum , Germany
| |
Collapse
|
22
|
Du T, Ma S, Pei X, Wang S, Zhou F. Bio-Inspired Design and Fabrication of Micro/Nano-Brush Dual Structural Surfaces for Switchable Oil Adhesion and Antifouling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602020. [PMID: 27511623 DOI: 10.1002/smll.201602020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 05/22/2023]
Abstract
The underwater superoleophobic surfaces play a significant role in anti-oil contamination, marine antifouling, etc. Inspired by the Gecko's feet and its self-cleaning property, a hierarchical structure composed of poly (acrylic acid) gel micro-brushes is designed by the liquid-infused method. This surface exhibits underwater superoleophobicity with very low oil adhesion. It is then modified with stimuli-responsive polymer nano-brushes via surface-initiated atom transfer radical polymerization from the embedded initiator. The micro/nano-brush dual structural surfaces can switch the underwater oil adhesion between low and high while keeping the superoleophobicity. The antifouling properties against algae attachment under different mediums are also investigated to show a strong link between oleophobicity and antibiofouling property. The model surface will be very useful in directing the design of marine self-cleaning coatings to both living and non-living species.
Collapse
Affiliation(s)
- Tao Du
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Pei
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
23
|
Mann EE, Magin CM, Mettetal MR, May RM, Henry MM, DeLoid H, Prater J, Sullivan L, Thomas JG, Twite MD, Parker AE, Brennan AB, Reddy ST. Micropatterned Endotracheal Tubes Reduce Secretion-Related Lumen Occlusion. Ann Biomed Eng 2016; 44:3645-3654. [PMID: 27535564 DOI: 10.1007/s10439-016-1698-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
Abstract
Tracheal intubation disrupts physiological homeostasis of secretion production and clearance, resulting in secretion accumulation within endotracheal tubes (ETTs). Novel in vitro and in vivo models were developed to specifically recapitulate the clinical manifestations of ETT occlusion. The novel Sharklet™ micropatterned ETT was evaluated, using these models, for the ability to reduce the accumulation of both bacterial biofilm and airway mucus compared to a standard care ETT. Novel ETTs with micropattern on the inner and outer surfaces were placed adjacent to standard care ETTs in in vitro biofilm and airway patency (AP) models. The primary outcome for the biofilm model was to compare commercially-available ETTs (standard care and silver-coated) to micropatterned for quantity of biofilm accumulation. The AP model's primary outcome was to evaluate accumulation of artificial airway mucus. A 24-h ovine mechanical ventilation model evaluated the primary outcome of relative quantity of airway secretion accumulation in the ETTs tested. The secondary outcome was measuring the effect of secretion accumulation in the ETTs on airway resistance. Micropatterned ETTs significantly reduced biofilm by 71% (p = 0.016) compared to smooth ETTs. Moreover, micropatterned ETTs reduced lumen occlusion, in the AP model, as measured by cross-sectional area, in distal (85%, p = 0.005), middle (84%, p = 0.001) and proximal (81%, p = 0.002) sections compared to standard care ETTs. Micropatterned ETTs reduced the volume of secretion accumulation in a sheep model of occlusion by 61% (p < 0.001) after 24 h of mechanical ventilation. Importantly, micropatterned ETTs reduced the rise in ventilation peak inspiratory pressures over time by as much as 49% (p = 0.005) compared to standard care ETTs. Micropatterned ETTs, demonstrated here to reduce bacterial contamination and mucus occlusion, will have the capacity to limit complications occurring during mechanical ventilation and ultimately improve patient care.
Collapse
Affiliation(s)
- Ethan E Mann
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - M Ryan Mettetal
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - Rhea M May
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - MiKayla M Henry
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA
| | - Heather DeLoid
- Preclinical Translational Services, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Justin Prater
- Preclinical Translational Services, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Lauren Sullivan
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - John G Thomas
- Department of Microbiology and Laboratory Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Mark D Twite
- Department of Anesthesiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Albert E Parker
- Department of Mathematical Sciences, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Anthony B Brennan
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Shravanthi T Reddy
- Sharklet Technologies, Inc., 12635 E Montview Blvd., Suite 155, Aurora, CO, 80045, USA.
| |
Collapse
|
24
|
Chen S, Ma C, Zhang G. Biodegradable polymers for marine antibiofouling: Poly(ε-caprolactone)/poly(butylene succinate) blend as controlled release system of organic antifoulant. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Chen Y, Liu Z, Han S, Han J, Jiang D. Poly(propylene carbonate) polyurethane self-polishing coating for marine antifouling application. J Appl Polym Sci 2016. [DOI: 10.1002/app.43667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongyue Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai 201418 People's Republic of China
| | - Zhixiong Liu
- Surface Engineering Division, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201 People's Republic of China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology; Shanghai 201418 People's Republic of China
| | - Jin Han
- College of Materials Science and Engineering, Zhejiang University of Technology; Hangzhou 310014 People's Republic of China
| | - Daoyi Jiang
- Surface Engineering Division, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201 People's Republic of China
| |
Collapse
|
26
|
Reusable nanoengineered surfaces for bacterial recruitment and decontamination. Biointerphases 2016; 11:019003. [DOI: 10.1116/1.4939239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
27
|
Li H, Hao D, Fan J, Song S, Guo X, Song W, Liu M, Jiang L. A robust double-network hydrogel with under sea water superoleophobicity fabricated via one-pot, one-step reaction. J Mater Chem B 2016; 4:4662-4666. [DOI: 10.1039/c6tb00818f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust double-network (DN) hydrogel fabricated by a one-pot, one-step reaction is reported.
Collapse
Affiliation(s)
- Hao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Dezhao Hao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Junbing Fan
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Sufen Song
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Xinglin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| | - Wenlong Song
- The State Key Laboratory of Supramolecular Structure and Materials, Jilin University
- Changchun 130023
- P. R. China
| | - Mingjie Liu
- The State Key Laboratory of Supramolecular Structure and Materials, Jilin University
- Changchun 130023
- P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Green Printing
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
28
|
da Silva Domingues JF, Roest S, Wang Y, van der Mei HC, Libera M, van Kooten TG, Busscher HJ. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. Acta Biomater 2015; 18:1-8. [PMID: 25752975 DOI: 10.1016/j.actbio.2015.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated-infection causes failure of biomaterial implants. Many new biomaterials have been evaluated for their ability to inhibit bacterial colonization and stimulate tissue-cell-integration, but neglect the role of immune cells. This paper compares macrophage phagocytosis of adhering Staphylococcus aureus on cationic-coatings and patterned poly(ethylene)glycol-hydrogels versus common biomaterials and stainless steel in order to identify surface conditions that promote clearance of adhering bacteria. Staphylococci were allowed to adhere and grow on the materials in a parallel-plate-flow-chamber, after which murine macrophages were introduced. From the decrease in the number of adhering staphylococci, phagocytosis-rates were calculated, and total macrophage displacements during an experiment determined. Hydrophilic surfaces had the lowest phagocytosis-rates, while common biomaterials had intermediate phagocytosis-rates. Patterning of poly(ethylene)glycol-hydrogel coatings increased phagocytosis-rates to the level of common biomaterials, while on cationic-coatings phagocytosis-rates remained relatively low. Likely, phagocytosis-rates on cationic coatings are hampered relative to common biomaterials through strong electrostatic binding of negatively-charged macrophages and staphylococci. On polymeric biomaterials and glass, phagocytosis-rates increased with macrophage displacement, while both parameters increased with biomaterial surface hydrophobicity. Thus hydrophobicity is a necessary surface condition for effective phagocytosis. Concluding, next-generation biomaterials should account for surface effects on phagocytosis in order to enhance the ability of these materials to resist biomaterial-associated-infection.
Collapse
|
29
|
Decker JT, Sheats JT, Brennan AB. Engineered antifouling microtopographies: surface pattern effects on cell distribution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15212-8. [PMID: 25420235 DOI: 10.1021/la504215b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces.
Collapse
Affiliation(s)
- Joseph T Decker
- Department of Materials Science and Engineering, University of Florida , Gainesville, Florida 32611, United States
| | | | | |
Collapse
|
30
|
Zhao N, Wang Z, Cai C, Shen H, Liang F, Wang D, Wang C, Zhu T, Guo J, Wang Y, Liu X, Duan C, Wang H, Mao Y, Jia X, Dong H, Zhang X, Xu J. Bioinspired materials: from low to high dimensional structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6994-7017. [PMID: 25212698 DOI: 10.1002/adma.201401718] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/11/2014] [Indexed: 06/03/2023]
Abstract
The surprising properties of biomaterials are the results of billions of years of evolution. Generally, biomaterials are assembled under mild conditions with very limited supply of constituents available for living organism, and their amazing properties largely result from the sophisticated hierarchical structures. Following the biomimetic principles to prepare manmade materials has drawn great research interests in materials science and engineering. In this review, we summarize the recent progress in fabricating bioinspired materials with the emphasis on mimicking the structure from one to three dimensions. Selected examples are described with a focus on the relationship between the structural characters and the corresponding functions. For one-dimensional materials, spider fibers, polar bear hair, multichannel plant roots and so on have been involved. Natural structure color and color shifting surfaces, and the antifouling, antireflective coatings of biomaterials are chosen as the typical examples of the two-dimensional biomimicking. The outstanding protection performance, and the stimuli responsive and self-healing functions of biomaterials based on the sophisticated hierarchical bulk structures are the emphases of the three-dimensional mimicking. Finally, a summary and outlook are given.
Collapse
Affiliation(s)
- Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mann EE, Manna D, Mettetal MR, May RM, Dannemiller EM, Chung KK, Brennan AB, Reddy ST. Surface micropattern limits bacterial contamination. Antimicrob Resist Infect Control 2014; 3:28. [PMID: 25232470 PMCID: PMC4166016 DOI: 10.1186/2047-2994-3-28] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additives. The studies presented here were carried out to investigate the MP surfaces capability to reduce colonization of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) compared to smooth control surfaces. METHODS The MP and smooth surfaces produced in acrylic film were compared for remaining bacterial contamination and colonization following inoculation. Direct sampling of surfaces was carried out after inoculation by immersion, spray, and/or touch methods. Ultimately, a combination assay was developed to assess bacterial contamination after touch transfer inoculation combined with drying (persistence) to mimic common environmental contamination scenarios in the clinic or hospital environment. The combination transfer and persistence assay was then used to test antimicrobial copper beside the MP for the ability to reduce MSSA and MRSA challenge. RESULTS The MP reduced bacterial contamination with log reductions ranging from 87-99% (LR = 0.90-2.18; p < 0.05) compared to smooth control surfaces. The MP was more effective than the 99.9% pure copper alloy C11000 at reducing surface contamination of S. aureus (MSSA and MRSA) through transfer and persistence of bacteria. The MP reduced MSSA by as much as 97% (LR = 1.54; p < 0.01) and MRSA by as much as 94% (LR = 1.26; p < 0.005) compared to smooth controls. Antimicrobial copper had no significant effect on MSSA contamination, but reduced MRSA contamination by 80% (LR = 0.70; p < 0.005). CONCLUSION The assays developed in this study mimic hospital environmental contamination events to demonstrate the performance of a MP to limit contamination under multiple conditions. Antimicrobial copper has been implemented in hospital room studies to evaluate its impact on nosocomial infections and a decrease in HAI rate was shown. Similar implementation of the MP has potential to reduce the incidence of HAIs although future clinical studies will be necessary to validate the MP's true impact.
Collapse
Affiliation(s)
- Ethan E Mann
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| | - Dipankar Manna
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| | - Michael R Mettetal
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| | - Rhea M May
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| | - Elisa M Dannemiller
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| | - Kenneth K Chung
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| | - Anthony B Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Shravanthi T Reddy
- Sharklet Technologies, Inc, 12635 E. Montview Blvd, Suite 160, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Ma J, Ma C, Yang Y, Xu W, Zhang G. Biodegradable Polyurethane Carrying Antifoulants for Inhibition of Marine Biofouling. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502147t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jielin Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Chunfeng Ma
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yun Yang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Wentao Xu
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
- Hefei
National Laboratory for Physical Sciences at Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
33
|
Yao J, Chen S, Ma C, Zhang G. Marine anti-biofouling system with poly(ε-caprolactone)/clay composite as carrier of organic antifoulant. J Mater Chem B 2014; 2:5100-5106. [DOI: 10.1039/c4tb00545g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
|
35
|
Perera-Costa D, Bruque JM, González-Martín ML, Gómez-García AC, Vadillo-Rodríguez V. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4633-41. [PMID: 24697600 DOI: 10.1021/la5001057] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The influence of surface topography on bacterial adhesion has been investigated using a range of spatially organized microtopographic surface patterns generated on polydimethylsiloxane (PDMS) and three unrelated bacterial strains. The results presented indicate that bacterial cells actively choose their position to settle, differentiating upper and lower areas in all the surface patterns evaluated. Such selective adhesion depends on the cells' size and shape relative to the dimensions of the surface topographical features and surface hydrophobicity/hydrophilicity. Moreover, it was found that all the topographies investigated provoke a significant reduction in bacterial adhesion (30-45%) relative to the smooth control samples regardless of surface hydrophobicity/hydrophilicity. This remarkable finding constitutes a general phenomenon, occurring in both Gram-positive and Gram-negative cells with spherical or rod shape, dictated by only surface topography. Collectively, the results presented in this study demonstrate that spatially organized microtopographic surface patterns represent a promising approach to controlling/inhibiting bacterial adhesion and biofilm formation.
Collapse
Affiliation(s)
- David Perera-Costa
- Department of Applied Physics, ‡Department of Biomedical Sciences and §Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Extremadura , Avda de Elvas s/n, 06006 Badajoz, Spain
| | | | | | | | | |
Collapse
|
36
|
May RM, Hoffman MG, Sogo MJ, Parker AE, O'Toole GA, Brennan AB, Reddy ST. Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs. Clin Transl Med 2014; 3:8. [PMID: 24739529 PMCID: PMC3996152 DOI: 10.1186/2001-1326-3-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/10/2014] [Indexed: 12/20/2022] Open
Abstract
Background Ventilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro. Methods The top five pathogens associated with ETT-related pneumonia, Methicillin-Resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Klebsiella pneumonia, Acinetobacter baumannii, and Escherichia coli, were evaluated for attachment to micro-patterned and un-patterned silicone surfaces in a short-term colonization assay. Two key pathogens, MRSA and Pseudomonas aeruginosa, were evaluated for biofilm formation in a nutrient rich broth for four days and minimal media for 24 hours, respectively, on each surface type. P. aeruginosa was further evaluated for biofilm formation on each surface type in a mucin-modified medium mimicking tracheal mucosal secretions. Results are reported as percent reductions and significance is based on t-tests and ANOVA models of log reductions. All experiments were replicated at least three times. Results Micro-patterned surfaces demonstrated reductions in microbial colonization for a broad range of species, with up to 99.9% (p < 0.05) reduction compared to un-patterned controls. Biofilm formation was also reduced, with 67% (p = 0.12) and 52% (p = 0.05) reductions in MRSA and P. aeruginosa biofilm formation, respectively. Further, a 58% (p < 0.01) reduction was demonstrated on micro-patterned surfaces for P. aeruginosa biofilms under clinically-simulated conditions when compared to un-patterned controls. Conclusions This engineered micro-pattern reduces the colonization and biofilm formation of key VAP-associated pathogens in vitro. Future application of this micro-pattern on endotracheal tubes may prevent or prolong the onset of VAP without the need for antimicrobial agents.
Collapse
Affiliation(s)
- Rhea M May
- Sharklet Technologies, Inc., Aurora, 12635 E. Montview Blvd. Suite 155, CO 80045 Aurora, CO USA
| | - Matthew G Hoffman
- Sharklet Technologies, Inc., Aurora, 12635 E. Montview Blvd. Suite 155, CO 80045 Aurora, CO USA
| | - Melinda J Sogo
- Sharklet Technologies, Inc., Aurora, 12635 E. Montview Blvd. Suite 155, CO 80045 Aurora, CO USA
| | - Albert E Parker
- Center for Biofilm Engineering, and the Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | | | - Anthony B Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Shravanthi T Reddy
- Sharklet Technologies, Inc., Aurora, 12635 E. Montview Blvd. Suite 155, CO 80045 Aurora, CO USA
| |
Collapse
|
37
|
Vasudevan R, Kennedy AJ, Merritt M, Crocker FH, Baney RH. Microscale patterned surfaces reduce bacterial fouling-microscopic and theoretical analysis. Colloids Surf B Biointerfaces 2014; 117:225-32. [PMID: 24657607 DOI: 10.1016/j.colsurfb.2014.02.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/25/2014] [Accepted: 02/22/2014] [Indexed: 11/30/2022]
Abstract
Microscale patterned surfaces have been shown to control the arrangement of bacteria attached to surfaces. This study was conducted to examine the effect of patterned topographies on bacterial fouling using Enterobacter cloacae as the test model. E. cloacae is an opportunistic pathogen involved frequently in nosocomial infections. It is an important model organism to be studied in the context of healthcare associated infections (HAI) and polydimethylsiloxane (PDMS) based urinary catheter fouling. Patterned surfaces, such as Sharklet™, have shown the promise of being a benign surface treatment for prevention of catheter associated urinary tract infections (CAUTI). To the best of our knowledge, inhibition of fouling by E. cloacae has not been demonstrated on microscale patterned PDMS surfaces. In this study, the Sharklet™ and smooth PDMS surfaces were used as controls. All pattern surfaces had statistically significantly lower percentage area coverage compared to the smooth PDMS control. A cross type feature (C-1-PDMS), demonstrated the most significant reduction in percent area coverage, 89% (p<0.01, α=0.05), compared to the smooth PDMS control and all other patterned test surfaces. Additionally, theoretical calculations show that C-1-PDMS is the only surface predicted to hold the thermodynamically stable Cassie state, which occurs due to trapping air pockets at the liquid-solid interface. Combined the results provide new insights for designing environmentally benign, novel, microscale patterned surfaces for restricting bacterial fouling.
Collapse
Affiliation(s)
- Ravikumar Vasudevan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| | - Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | | | - Fiona H Crocker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Ronald H Baney
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
The interaction of marine fouling organisms with topography of varied scale and geometry: a review. Biointerphases 2013; 8:30. [DOI: 10.1186/1559-4106-8-30] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/04/2013] [Indexed: 11/10/2022] Open
|
39
|
Decker JT, Magin CM, Long CJ, Finlay JA, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies: an energetic model that predicts cell attachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13023-13030. [PMID: 24044383 DOI: 10.1021/la402952u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have developed a model for the prediction of cell attachment to engineered microtopographies based on two previous models: the attachment point theory and the engineered roughness index (ERI) model. The new surface energetic attachment (SEA) model is based on both the properties of the cell-material interface and the size and configuration of the topography relative to the organism. We have used Monte Carlo simulation to examine the SEA model's ability to predict relative attachment of the green alga Ulva linza to different locations within a unit cell. We have also compared the predicted relative attachment for Ulva linza, the diatom Navicula incerta, the marine bacterium Cobetia marina, and the barnacle cyprid Balanus amphitrite to a wide variety of microtopographies. We demonstrate good correlation between the experimental results and the model results for all tested experimental data and thus show the SEA model may be used as a powerful indicator of the efficacy for antifouling topographies.
Collapse
Affiliation(s)
- Joseph T Decker
- Department of Materials Science and Engineering, University of Florida , Gainesville, Florida 32611-6400, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol 2013; 15:2879-93. [PMID: 23869714 DOI: 10.1111/1462-2920.12186] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 01/03/2023]
Abstract
The search for new antifouling (AF) coatings that are environmentally benign has led to renewed interest in the ways that micro-organisms colonize substrates in the marine environment. This review covers recently published research on the global species composition and dynamics of marine biofilms, consisting mainly of bacteria and diatoms found on man-made surfaces including AF coatings. Marine biofilms directly interact with larger organisms (macrofoulers) during colonization processes; hence, recent literature on understanding the basis of the biofilm/macrofouling interactions is essential and will also be reviewed here. Overall, differences have been identified in species composition between biofilm and planktonic forms for both diatoms and bacteria at various exposure sites. In most studies, the underlying biofilm was found to induce larval and spore settlement of macrofoulers; however, issues such as reproducibility, differences in exposure sites and biofilm composition (natural multispecies vs. monospecific species) may influence the outcomes.
Collapse
Affiliation(s)
- Maria Salta
- National Centre for Advanced Tribology at Southampton, Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Julian A Wharton
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Yves Blache
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France
| | - Keith R Stokes
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.,Physical Sciences Department, DSTL, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | - Jean-Francois Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France
| |
Collapse
|
41
|
Ma C, Xu L, Xu W, Zhang G. Degradable polyurethane for marine anti-biofouling. J Mater Chem B 2013; 1:3099-3106. [PMID: 32261013 DOI: 10.1039/c3tb20454e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradable polyurethane (PU) with copolyester oligomer consisting of ε-caprolactone (CL) and glycolide (GA) as the soft segments has been prepared by a combination of ring-opening polymerization and condensation reaction. Enzymatic and hydrolytic degradation experiments demonstrate that the PU can degrade in seawater. Such a polyurethane exhibit a more rapid degradation in comparison with that with poly(ε-caprolactone) (PCL) soft segments because the introduction of GA can reduce the crystallinity, as revealed by differential scanning calorimetry (DSC) and polarizing optical microscope (POM). Marine field tests show that the degradable polyurethane has good antifouling ability due to its self-renewal property. Besides, such polyurethane can serve as a carrier and controlled release system for an antifoulant, and the incorporation of an antifoulant in the polyurethane can significantly improve the antifouling ability and duration.
Collapse
Affiliation(s)
- Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | |
Collapse
|
42
|
Xiao L, Thompson SEM, Röhrig M, Callow ME, Callow JA, Grunze M, Rosenhahn A. Hot embossed microtopographic gradients reveal morphological cues that guide the settlement of zoospores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1093-1099. [PMID: 23273183 DOI: 10.1021/la303832u] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among different surface cues, the settlement of cells and larvae of marine macrofouling organisms has been found to be strongly influenced by surface microtopographies. In this article, the settlement of zoospores of the green alga Ulva linza on a surface topographic gradient has been investigated. "Honeycomb" gradient structures with feature sizes ranging from 1 to 10 μm were prepared by hot embossing, and the effect on the density of spores that attached in settlement assays was quantified. The highest density of spores was found when the size of the microstructures was similar to or larger than the size of the spores. With decreasing size of the structures, spore settlement density decreased. Interestingly, spore settlement density correlated with the Wenzel roughness of the surfaces. "Kink sites" on the surface played an important role and resembled preferred attachment positions. Furthermore, the gradients allowed the minimum pit size that the spores were able to squeeze into to be determined.
Collapse
Affiliation(s)
- Linlin Xiao
- Applied Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ma C, Yang H, Zhou X, Wu B, Zhang G. Polymeric material for anti-biofouling. Colloids Surf B Biointerfaces 2012; 100:31-5. [DOI: 10.1016/j.colsurfb.2012.04.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 11/16/2022]
|
44
|
Cho Y, Sundaram HS, Finlay JA, Dimitriou MD, Callow ME, Callow JA, Kramer EJ, Ober CK. Reconstruction of Surfaces from Mixed Hydrocarbon and PEG Components in Water: Responsive Surfaces Aid Fouling Release. Biomacromolecules 2012; 13:1864-74. [DOI: 10.1021/bm300363g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youngjin Cho
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| | - Harihara S. Sundaram
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| | - John A. Finlay
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Michael D. Dimitriou
- Department of Materials, University of California, Santa Barbara, California
93106, United States
| | - Maureen E. Callow
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - James A. Callow
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Edward J. Kramer
- Department of Materials, University of California, Santa Barbara, California
93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California
93106, United States
| | - Christopher K. Ober
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| |
Collapse
|
45
|
Ma CF, Yang HJ, Zhang GZ. Anti-biofouling by degradation of polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-012-1158-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Sokolova A, Bailey JJ, Waltz GT, Brewer LH, Finlay JA, Fornalik J, Wendt DE, Callow ME, Callow JA, Bright FV, Detty MR. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. BIOFOULING 2012; 28:143-157. [PMID: 22303880 DOI: 10.1080/08927014.2012.659244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Four-component xerogel films consisting of 1 mole-% n-octadecyltrimethoxysilane (C18) and 50 mole-% tetraethoxysilane (TEOS) in combination with 1-24 mole-% tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (TDF) and 25-48 mole-% n-octyltriethoxysilane (C8) and a 1:49:50 mole-% C18/TDF/TEOS were prepared. Settlement of barnacle cyprids and removal of juvenile barnacles, settlement of zoospores of the alga Ulva linza, and strength of attachment of 7-day sporelings (young plants) of Ulva were compared amongst the xerogel formulations. Several of the xerogel formulations were comparable to poly(dimethylsiloxane) elastomer with respect to removal of juvenile barnacles and removal of sporeling biomass. The 1:4:45:50 and 1:14:35:50 C18/TDF/C8/TEOS xerogels displayed some phase segregation by atomic force microscopy (AFM) pre- and post-immersion in water. Imaging reflectance infrared microscopy showed the formation of islands of alkane-rich and perfluoroalkane-rich regions in these same xerogels both pre- and post-immersion in water. Surface energies were unchanged upon immersion in water for 48 h amongst the TDF-containing xerogel coatings. AFM measurements demonstrated that surface roughness on the 1:4:45:50 and 1:14:35:50 C18/TDF/C8/TEOS xerogel coatings decreased upon immersion in water.
Collapse
Affiliation(s)
- Anastasiya Sokolova
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cooper SP, Finlay JA, Cone G, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. BIOFOULING 2011; 27:881-891. [PMID: 21882899 DOI: 10.1080/08927014.2011.611305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.
Collapse
Affiliation(s)
- Scott P Cooper
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
48
|
Reddy ST, Chung KK, McDaniel CJ, Darouiche RO, Landman J, Brennan AB. Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. J Endourol 2011; 25:1547-52. [PMID: 21819223 DOI: 10.1089/end.2010.0611] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Catheter-associated urinary tract infection (CAUTI) is the most common device-associated infection and can result in serious medical consequences. We studied the efficacy of a novel microscopic physical surface modification (Sharklet) for preventing bacterial colonization and migration of uropathogenic Escherichia coli on silicone elastomer. MATERIALS AND METHODS In vitro growth assays evaluated E coli colonization using three variations of micropatterned silicone surfaces vs a smooth silicone control. Enumeration techniques included quantification of colonies on surfaces and analysis of bacterial area coverage and colony size. In vitro migration assays involved placement of micropatterned and smooth silicone rod segments between two agar islands to measure incidence of migration. RESULTS All three variations of the Sharklet micropattern outperformed the control surfaces in inhibiting E coli colonization. On average, 47% reduction in colony-forming units (CFUs) and bacterial area coverage plus 77% reduction in colony size were achieved with the Sharklet surfaces in tryptic soy broth and artificial urine compared with the control nonpatterned surfaces. The incidence of E coli migration over the rod segments was reduced by more than 80% for the Sharklet transverse patterned rods compared with the unpatterned control rods. CONCLUSION The Sharklet micropattern is effective at inhibiting colonization and migration of a common uropathogen. This performance is achieved through a physical surface modification without the use of any antimicrobial agents. Because deterrence of bacterial colonization and migration is a critical step to prevent CAUTI, the Sharklet micropattern offers a novel concept in addressing this important problem.
Collapse
|
49
|
Cho Y, Sundaram HS, Weinman CJ, Paik MY, Dimitriou MD, Finlay JA, Callow ME, Callow JA, Kramer EJ, Ober CK. Triblock Copolymers with Grafted Fluorine-Free, Amphiphilic, Non-Ionic Side Chains for Antifouling and Fouling-Release Applications. Macromolecules 2011. [DOI: 10.1021/ma200269s] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Youngjin Cho
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Harihara S. Sundaram
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Marvin Y. Paik
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael D. Dimitriou
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - John A. Finlay
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - Maureen E. Callow
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - James A. Callow
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - Edward J. Kramer
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher K. Ober
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
50
|
Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3012-9. [PMID: 21288031 DOI: 10.1021/la104607g] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-tier micro- and nanoscale quasi-periodic self-organized structures, mimicking the surface of a lotus Nelumbo nucifera leaf, were fabricated on titanium surfaces using femtosecond laser ablation. The first tier consisted of large grainlike convex features between 10 and 20 μm in size. The second tier existed on the surface of these grains, where 200 nm (or less) wide irregular undulations were present. The introduction of the biomimetic surface patterns significantly transformed the surface wettabilty of the titanium surface. The original surface possessed a water contact angle of θ(W) 73 ± 3°, whereas the laser-treated titanium surface became superhydrophobic, with a water contact angle of θ(W) 166 ± 4°. Investigations of the interaction of S. aureus and P. aeruginosa with these superhydrophobic surfaces at the surface-liquid interface revealed a highly selective retention pattern for two pathogenic bacteria. While S. aureus cells were able to successfully colonize the superhydrophobic titanium surfaces, no P. aeruginosa cells were able to attach to the surface (i.e., any attached bacterial cells were below the estimated lower detection limit).
Collapse
Affiliation(s)
- Elena Fadeeva
- Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|