1
|
Barton F, Shaw S, Morris K, Graham J, Lloyd JR. Impact and control of fouling in radioactive environments. PROGRESS IN NUCLEAR ENERGY 2022. [DOI: 10.1016/j.pnucene.2022.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Sushmitha TJ, Rajeev M, Sriyutha Murthy P, Ganesh S, Toleti SR, Karutha Pandian S. Bacterial community structure of early-stage biofilms is dictated by temporal succession rather than substrate types in the southern coastal seawater of India. PLoS One 2021; 16:e0257961. [PMID: 34570809 PMCID: PMC8476003 DOI: 10.1371/journal.pone.0257961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial communities colonized on submerged substrata are recognized as a key factor in the formation of complex biofouling phenomenon in the marine environment. Despite massive maritime activities and a large industrial sector in the nearshore of the Laccadive Sea, studies describing pioneer bacterial colonizers and community succession during the early-stage biofilm are scarce. We investigated the biofilm-forming bacterial community succession on three substrata viz. stainless steel, high-density polyethylene, and titanium over 15 days of immersion in the seawater intake area of a power plant, located in the southern coastal region of India. The bacterial community composition of biofilms and peripheral seawater were analyzed by Illumina MiSeq sequenced 16S rRNA gene amplicons. The obtained metataxonomic results indicated a profound influence of temporal succession over substrate type on the early-stage biofilm-forming microbiota. Bacterial communities showed vivid temporal dynamics that involved variations in abundant bacterial groups. The proportion of dominant phyla viz. Proteobacteria decreased over biofilm succession days, while Bacteroidetes increased, suggesting their role as initial and late colonizers, respectively. A rapid fluctuation in the proportion of two bacterial orders viz. Alteromonadales and Vibrionales were observed throughout the successional stages. LEfSe analysis identified specific bacterial groups at all stages of biofilm development, whereas no substrata type-specific groups were observed. Furthermore, the results of PCoA and UPGMA hierarchical clustering demonstrated that the biofilm-forming community varied considerably from the planktonic community. Phylum Proteobacteria preponderated the biofilm-forming community, while the Bacteroidetes, Cyanobacteria, and Actinobacteria dominated the planktonic community. Overall, our results refute the common assumption that substrate material has a decisive impact on biofilm formation; rather, it portrayed that the temporal succession overshadowed the influence of the substrate material. Our findings provide a scientific understanding of the factors shaping initial biofilm development in the marine environment and will help in designing efficient site-specific anti-biofouling strategies.
Collapse
Affiliation(s)
- T. J. Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Meora Rajeev
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - P. Sriyutha Murthy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - S. Ganesh
- Department of Chemistry, Scott Christian College, Nagercoil, Tamil Nadu, India
| | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | | |
Collapse
|
3
|
Rajeev M, Sushmitha TJ, Toleti SR, Pandian SK. Culture dependent and independent analysis and appraisal of early stage biofilm-forming bacterial community composition in the Southern coastal seawater of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:308-320. [PMID: 30798240 DOI: 10.1016/j.scitotenv.2019.02.171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Microbial aggregation on artificial surfaces is a fundamental phenomenon in aquatic systems that lead to biofouling, corrosion and influence the buoyancy of plastic materials. Despite the maritime activities and with nearshore large industrial sector, Laccadive Sea in the Indian Ocean has rarely been investigated for characterizing early biofilm-forming bacterial community. The present investigation was aimed to catalogue the primary colonizers on artificial surfaces and their comparison with planktonic community in southern coastal seawater of India. Surface seawater samples and biofilm assembled on three artificial surfaces over a period of 72 h of immersion in the intake area of a nuclear power plant at Kudankulam, India were collected. The structure of surface assemblages and plankton were unveiled by employing culture dependent, DGGE and NGS methods. In static condition, a collection of aerobic heterotrophic bacteria was screened in vitro for their ability to form potent biofilm. Proteobacteria preponderated the communities both in seawater and natural biofilm and Gammaproteobacteria accounted for >85% in the latter. Vibrionaceae, Alteromonadaceae and Pseudoalteromonadaceae dominated the biofilm community and constituted for 41, 25 and 8%, respectively. In contrast to other studies that showed Rhodobacteraceae family of Alphaproteobacteria as predominant component, we found Vibrionaceae of Gammaproteobacteria as dominant group in early stage of biofilm formation. Both DGGE and NGS data indicated that the attached community is noticeably distinct from those suspended in water column and form the basis for the proposed hypothesis of species sorting theory, that is, the local environmental conditions influence bacterial community assembly. Collectively, the data are testament for species sorting process that occur during initial assembly of bacterial community in marine environment and shed light on the structure of marine bacterial biofilm development. The outcome of the present study is of immense importance for designing long-term, efficient and appropriate strategies to control the biofouling phenomenon.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam 603 102, Tamil Nadu, India
| | | |
Collapse
|
4
|
Liang R, Li J, Liu M, Huang ZY. Influence of inhibitors on the adhesion of SRB to the stainless steel in circulating cooling water. Colloids Surf B Biointerfaces 2018; 172:1-9. [PMID: 30114603 DOI: 10.1016/j.colsurfb.2018.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Influence of the surface characteristics of three stainless steels (SS304, 316L and 317) and presence of scale inhibitors on adhesion kinetics of sulfate reducing bacteria (SRB) in circulating cooling water, were investigated by evaluating surface free energy, adhesion kinetic constants in a parallel plate flow chamber. Results show that the surface free energy values of SS317, SS316L and SS304 are -31.69, -24.18 and -13.92 mJ m-2, respectively. SS317 surface had higher surface hydrophobicity than SS316L and SS304. In the process of bacteria cells adhesion onto SS surfaces, electrostatic interaction for SS is slightly more than hydrophobic interaction. The number of adhering bacteria and the adhesion kinetic constants are different on the three types of stainless steel. The adhesion kinetic constants for SS317 and 316L are greater than that for SS304, which are 0.0354, 0.0282 and 0.0190 min-1, respectively. Scale inhibitors of hydrosy ethyl fork phosphonic acid (HEDP) and phosphono butane-1, 2, 4-tricarboxylic acid (PBTCA) have a certain influence on the initial adhesion of bacteria cell and adhesion kinetics constants are reduced in the presence of HEDP and PBTCA.
Collapse
Affiliation(s)
- R Liang
- Department of Municipal and Environmental Engineering, Research Center for Aqueous Organic Pollutants Control and Water Quality Security, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - J Li
- Department of Municipal and Environmental Engineering, Research Center for Aqueous Organic Pollutants Control and Water Quality Security, Beijing Jiaotong University, Haidian District, Beijing, 100044, China.
| | - M Liu
- Department of Municipal and Environmental Engineering, Research Center for Aqueous Organic Pollutants Control and Water Quality Security, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Z Y Huang
- Department of Municipal and Environmental Engineering, Research Center for Aqueous Organic Pollutants Control and Water Quality Security, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| |
Collapse
|
5
|
Cho K, Jeong D, Lee S, Bae H. Chlorination caused a shift in marine biofilm niches on microfiltration/ultrafiltration and reverse osmosis membranes and UV irradiation effectively inactivated a chlorine-resistant bacterium. Appl Microbiol Biotechnol 2018; 102:7183-7194. [DOI: 10.1007/s00253-018-9111-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/16/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023]
|
6
|
Jeong S, Cho K, Jeong D, Lee S, Leiknes T, Vigneswaran S, Bae H. Effect of engineered environment on microbial community structure in biofilter and biofilm on reverse osmosis membrane. WATER RESEARCH 2017; 124:227-237. [PMID: 28759795 DOI: 10.1016/j.watres.2017.07.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Four dual media filters (DMFs) were operated in a biofiltration mode with different engineered environments (DMF I and II: coagulation with/without acidification and DMF III and IV: without/with chlorination). Designed biofilm enrichment reactors (BERs) containing the removable reverse osmosis (RO) coupons, were connected at the end of the DMFs in parallel to analyze the biofilm on the RO membrane by DMF effluents. Filtration performances were evaluated in terms of dissolved organic carbon (DOC) and assimilable organic carbon (AOC). Organic foulants on the RO membrane were also quantified and fractionized. The bacterial community structures in liquid (seawater and effluent) and biofilm (DMF and RO) samples were analyzed using 454-pyrosequencing. The DMF IV fed with the chlorinated seawater demonstrated the highest reductions of DOC including LMW-N as well as AOC among the other DMFs. The DMF IV was also effective in reducing organic foulants on the RO membrane surface. The bacterial community structure was grouped according to the sample phase (i.e., liquid and biofilm samples), sampling location (i.e., DMF and RO samples), and chlorination (chlorinated and non-chlorinated samples). In particular, the biofilm community in the DMF IV differed from the other DMF treatments, suggesting that chlorination exerted as stronger selective pressure than pH adjustment or coagulation on the biofilm community. In the DMF IV, several chemoorganotrophic chlorine-resistant biofilm-forming bacteria such as Hyphomonas, Erythrobacter, and Sphingomonas were predominant, and they may enhance organic carbon degradation efficiency. Diverse halophilic or halotolerant organic degraders were also found in other DMFs (i.e., DMF I, II, and III). Various kinds of dominant biofilm-forming bacteria were also investigated in RO membrane samples; the results provided possible candidates that cause biofouling when DMF process is applied as the pretreatment option for the RO process.
Collapse
Affiliation(s)
- Sanghyun Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea; Biological and Environmental Science & Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Faculty of Engineering and IT, University of Technology, Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Kyungjin Cho
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul, 136-791, Republic of Korea
| | - Dawoon Jeong
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul, 136-791, Republic of Korea; Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-749, Republic of Korea
| | - Seockheon Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul, 136-791, Republic of Korea
| | - TorOve Leiknes
- Biological and Environmental Science & Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and IT, University of Technology, Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Simões LC, Lemos M, Pereira AM, Abreu AC, Saavedra MJ, Simões M. Persister cells in a biofilm treated with a biocide. BIOFOULING 2011; 27:403-11. [PMID: 21547756 DOI: 10.1080/08927014.2011.579599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.
Collapse
Affiliation(s)
- Lúcia C Simões
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
Simões LC, Lemos M, Araújo P, Pereira AM, Simões M. The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens. BIOFOULING 2011; 27:337-346. [PMID: 21512918 DOI: 10.1080/08927014.2011.575935] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l(-1) caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.
Collapse
Affiliation(s)
- Lucia C Simões
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | | | | | | |
Collapse
|