1
|
Wei C, Zhang Y, Tang Z, Zhang C, Wu J, Wu B. Surface Reconstruction of Silicone-Based Amphiphilic Polymers for Mitigating Marine Biofouling. Polymers (Basel) 2024; 16:1570. [PMID: 38891516 PMCID: PMC11174759 DOI: 10.3390/polym16111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Poly(dimethylsiloxane) (PDMS) coatings are considered to be environmentally friendly antifouling coatings. However, the presence of hydrophobic surfaces can enhance the adhesion rate of proteins, bacteria and microalgae, posing a challenge for biofouling removal. In this study, hydrophilic polymer chains were synthesised from methyl methacrylate (MMA), Poly(ethylene glycol) methyl ether methacrylate (PEG-MA) and 3-(trimethoxysilyl) propyl methacrylate (TPMA). The crosslinking reaction between TPMA and PDMS results in the formation of a silicone-based amphiphilic co-network with surface reconstruction properties. The hydrophilic and hydrophobic domains are covalently bonded by condensation reactions, while the hydrophilic polymers migrate under water to induce surface reconstruction and form hydrogen bonds with water molecules to form a dense hydrated layer. This design effectively mitigates the adhesion of proteins, bacteria, algae and other marine organisms to the coating. The antifouling performance of the coatings was evaluated by assessing their adhesion rates to proteins (BSA-FITC), bacteria (B. subtilis and P. ruthenica) and algae (P. tricornutum). The results show that the amphiphilic co-network coating (e.g., P-AM-15) exhibits excellent antifouling properties against protein, bacterial and microalgal fouling. Furthermore, an overall assessment of its antifouling performance and stability was conducted in the East China Sea from 16 May to 12 September 2023, which showed that this silicon-based amphiphilic co-network coating remained intact with almost no marine organisms adhering to it. This study provides a novel approach for the development of high-performance silicone-based antifouling coatings.
Collapse
Affiliation(s)
| | | | | | | | - Jianhua Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, School of Marine Engineering, JiMei University, Xiamen 361021, China; (C.W.); (Y.Z.); (Z.T.); (C.Z.)
| | - Bo Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, School of Marine Engineering, JiMei University, Xiamen 361021, China; (C.W.); (Y.Z.); (Z.T.); (C.Z.)
| |
Collapse
|
2
|
Labrague G, Gomez F, Chen Z. Characterization of Buried Interfaces of Silicone Materials in Situ to Understand Their Fouling-Release, Antifouling, and Adhesion Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9345-9361. [PMID: 38669686 DOI: 10.1021/acs.langmuir.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Poly(dimethylsiloxane) (PDMS) has numerous excellent properties and is extensively used as the main component of many silicone products in a variety of research fields and practical applications such as biomedical materials, aviation, construction, electronic devices, and automobiles. Interfacial structures of PDMS and other components in silicone systems are important for such research and applications. It is difficult to probe interfacial molecular structures of buried solid-liquid and solid-solid interfaces of silicone materials due to the lack of appropriate analytical tools. In this feature article, we presented our research on elucidating the molecular structures of PDMS as well as other additives in silicone samples at buried interfaces in situ at the molecular level using a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy. SFG was applied to study various PDMS surfaces in liquid environments to understand their fouling-release and antifouling activities. SFG has also been used to study buried solid-solid interfaces between silicone adhesives and polymers, elucidating the molecular adhesion mechanisms. Our SFG studies provide important knowledge on interfacial structure-function relationships of silicone materials, helping the design and development of silicone materials with improved properties through optimization of silicone interfacial structures.
Collapse
Affiliation(s)
- Gladwin Labrague
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fernando Gomez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Soleimani S, Jannesari A, Etezad SM. Prevention of marine biofouling in the aquaculture industry by a coating based on polydimethylsiloxane-chitosan and sodium polyacrylate. Int J Biol Macromol 2023:125508. [PMID: 37356687 DOI: 10.1016/j.ijbiomac.2023.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In this study, a series of novel hydrophobic/hydrophilic hybrid (HHH) coatings with the feature of preventing the fouling phenomenon was fabricated based on polydimethylsiloxane (PDMS), as matrix and two hydrophilic polymers: chitosan and sodium polyacrylate, as dispersed phases. Antibacterial activity, pseudo-barnacle adhesion strength, surface free energy, water contact angle, and water absorption were performed for all samples. Evaluating field immersion of the samples was performed in the natural seawater. The results showed that the dispersed phase containing PDMS coatings showed simultaneously both of antibacterial activity and foul release behavior. Among the samples, the PCs4 coating containing 4 wt% Cs indicated the lowest pseudo barnacle adhesion strength (0.04 MPa), the lowest surface free energy (18.94 mN/m), the highest water contact angle (116.05°), and the percentage of fouling organisms 9.8 % after 30 days immersion. The HHH coatings can be considered as novel eco-friendly antifouling/foul release coatings for aquaculture applications.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Seyed Masoud Etezad
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Abstract
Simultaneous realization of superior mechanical and antifouling properties is critical for a coating. The use of stereoscopic polysiloxanes in place of linear polysiloxanes to fabricate antifouling coatings can combine properties of organic and inorganic materials, i.e., they can exhibit both high hardness and wear resistance from inorganic components as well as the flexibility and tunability from organic components. This strategy is used to prepare hard yet flexible antifouling coatings or polymer-ceramic hybrid antifouling coatings. In this mini-review, we report the recent advances in this field. Particularly, the effects of stereoscopic polysiloxane structures on their mechanical and antifouling properties are discussed in detail.
Collapse
|
5
|
Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11081102. [PMID: 36009971 PMCID: PMC9404944 DOI: 10.3390/antibiotics11081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/01/2023] Open
Abstract
Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis. In addition, the retrieved publications were subjected to a quality assessment process based on an adapted Methodological Index for Non-Randomized Studies (MINORS) scale. In general, this review demonstrated the promising antifouling performance of these carbon nanomaterials in marine environments. Further, results from the revised studies suggested that functionalized GP- and CNTs-based marine coatings exhibited improved antifouling performance compared to these materials in pristine forms. Thanks to their high self-cleaning and enhanced antimicrobial properties, as well as durability, these functionalized composites showed outstanding results in protecting submerged surfaces from the settlement of fouling organisms in marine settings. Overall, these findings can pave the way for the development of new carbon-engineered surfaces capable of preventing marine biofouling.
Collapse
|
6
|
Tesler AB, Prado LH, Thievessen I, Mazare A, Schmuki P, Virtanen S, Goldmann WH. Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29386-29397. [PMID: 35696316 DOI: 10.1021/acsami.2c04960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wetting of surfaces plays a vital role in many biological and industrial processes. There are several phenomena closely related to wetting such as biofouling and corrosion that cause the deterioration of materials, while the efforts to prevent the degradation of surface functionality have spread over several millennia. Antifouling coatings have been developed to prevent/delay both corrosion and biofouling, but the problems remain unsolved, influencing the everyday life of the modern society in terms of safety and expenses. In this study, liquid-infused slippery surfaces (LISSs), a recently developed nontoxic repellent technology, that is, a flat variation of omniphobic slippery liquid-infused porous surfaces (SLIPSs), were studied for their anti-corrosion and marine anti-biofouling characteristics on metallic substrates under damaged and plain undamaged conditions. Austenitic stainless steel was chosen as a model due to its wide application in aquatic environments. Our LISS coating effectively prevents biofouling adhesion and decays corrosion of metallic surfaces even if they are severely damaged. The mechanically robust LISS reported in this study significantly extends the SLIPS technology, prompting their application in the marine environment due to the synergy between the facile fabrication process, rapid binding kinetics, nontoxic, ecofriendly, and low-cost applied materials together with excellent repellent characteristics.
Collapse
Affiliation(s)
- Alexander B Tesler
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Lucia H Prado
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Ingo Thievessen
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| | - Anca Mazare
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Patrik Schmuki
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
- Chemistry Department, Faculty of Sciences, King Abdul-Aziz University, Jeddah 80203, Saudi Arabia
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, Olomouc 772 07, Czech Republic
| | - Sannakaisa Virtanen
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| |
Collapse
|
7
|
Tan J, Liang X, Yang J, Zhou S. Sol-gel-derived hard coatings from tetraethoxysilane and organoalkoxysilanes bearing zwitterionic and isothiazolinone groups and their antifouling behaviors. J Mater Chem B 2021; 10:406-417. [PMID: 34935850 DOI: 10.1039/d1tb02069b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current environmentally friendly marine antifouling (AF) coatings are mainly polymeric with a relatively low hardness. Hard sol-gel-derived AF coatings for underwater robot-cleaning are seldom used. In this work, two new organoalkoxysilanes, i.e., (N-methoxyacylethyl)-3-aminopropyltriethoxysilane and 2-(2-hydroxy-3-(3-(trimethoxysilyl)propoxy)propyl)benzo[d]isothiazol-3(2H)-one, were synthesized by a facile method. These two precursors were used with tetraethoxysilane (TEOS) to produce three series of hybrid AF coatings with zwitterionic group (Z-χ), antibacterial group (1,2-benzisothiazolin-3-one) (A-χ) and zwitterionic and antibacterial groups (S-χ) by a sol-gel process. The hardness of the coatings was measured using a pencil hardness tester and the AF behaviors of the coatings were examined by laboratory and field assays. A pencil hardness up to 5 H was achieved and slight deterioration was observed after 9 months of immersion in artificial seawater for the A-χ and S-χ coatings at a sufficiently high TEOS content. A synergistic effect between the zwitterion and antimicrobial agents existed but was not obvious. A higher TEOS content led to a higher hardness and better AF performance regardless of the type of AF group. Even with the same biofilm formation after field assay, coatings with a higher TEOS content exhibited a better resistance to mussel settlement.
Collapse
Affiliation(s)
- Jinyan Tan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jinlong Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| |
Collapse
|
8
|
Chungprempree J, Charoenpongpool S, Preechawong J, Atthi N, Nithitanakul M. Simple Preparation of Polydimethylsiloxane and Polyurethane Blend Film for Marine Antibiofouling Application. Polymers (Basel) 2021; 13:2242. [PMID: 34301003 PMCID: PMC8309381 DOI: 10.3390/polym13142242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
A key way to prevent undesirable fouling of any structure in the marine environment, without harming any microorganisms, is to use a polymer film with high hydrophobicity. The polymer film, which was simply prepared from a blend of hydrophobic polydimethylsiloxane elastomer and hydrophilic polyurethane, showed improved properties and economic viability for antifouling film for the marine industry. The field emission scanning electron microscope and energy dispersive X-ray spectrometer (FESEM and EDX) results from the polymer blend suggested a homogenous morphology and good distribution of the polyurethane disperse phase. The PDMS:PU blend (95:5) film gave a water contact angle of 103.4° ± 3.8° and the PDMS film gave a water contact angle of 109.5° ± 4.2°. Moreover, the PDMS:PU blend (95:5) film could also be modified with surface patterning by using soft lithography process to further increase the hydrophobicity. It was found that PDMS:PU blend (95:5) film with micro patterning from soft lithography process increased the contact angle to 128.8° ± 1.6°. The results from a field test in the Gulf of Thailand illustrated that the bonding strength between the barnacles and the PDMS:PU blend (95:5) film (0.07 MPa) were lower than the bonding strength between the barnacles and the carbon steel (1.16 MPa). The barnacles on the PDMS:PU blend (95:5) film were more easily removed from the surface. This indicated that the PDMS:PU blend (95:5) exhibited excellent antifouling properties and the results indicated that the PDMS:PU blend (95:5) film with micro patterning surface could be employed for antifouling application.
Collapse
Affiliation(s)
- Jirasuta Chungprempree
- The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12, Wangmai Pathumwan, Bangkok 10330, Thailand; (J.C.); (S.C.); (J.P.)
- Center of Excellence on Petrochemical and Materials Technology, Chula Soi 12, Wangmai Pathumwan, Bangkok 10330, Thailand
| | - Sutep Charoenpongpool
- The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12, Wangmai Pathumwan, Bangkok 10330, Thailand; (J.C.); (S.C.); (J.P.)
| | - Jitima Preechawong
- The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12, Wangmai Pathumwan, Bangkok 10330, Thailand; (J.C.); (S.C.); (J.P.)
| | - Nithi Atthi
- Thai Microelectronics Center (TMEC), National Electronics and Computer Technology Center (NECTEC), Chachoengsao 24000, Thailand;
| | - Manit Nithitanakul
- The Petroleum and Petrochemical College, Chulalongkorn University, Chula Soi 12, Wangmai Pathumwan, Bangkok 10330, Thailand; (J.C.); (S.C.); (J.P.)
- Center of Excellence on Petrochemical and Materials Technology, Chula Soi 12, Wangmai Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Chitosan Nanocomposite Coatings Containing Chemically Resistant ZnO-SnO x Core-shell Nanoparticles for Photocatalytic Antifouling. Int J Mol Sci 2021; 22:ijms22094513. [PMID: 33925962 PMCID: PMC8123458 DOI: 10.3390/ijms22094513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Functional nanocomposites with biopolymers and zinc oxide (ZnO) nanoparticles is an emerging application of photocatalysis in antifouling coatings. The reduced chemical stability of ZnO in the acidic media in which chitosan is soluble affects the performance of chitosan nanocomposites in antifouling applications. In this study, a thin shell of amorphous tin dioxide (SnOx) was grown on the surface of ZnO to form ZnO–SnOx core–shell nanoparticles that improved the chemical stability of the photocatalyst nanoparticles, as examined at pH 3 and 6. The photocatalytic activity of ZnO–SnOx in the degradation of methylene blue (MB) dye under visible light showed a higher efficiency than that of ZnO nanoparticles due to the passivation of electronic defects. Chitosan-based antifouling coatings with varying percentages of ZnO or ZnO–SnOx nanoparticles, with or without the glutaraldehyde (GA) crosslinking of chitosan, were developed and studied. The incorporation of photocatalysts into the chitosan matrix enhanced the thermal stability of the coatings. Through a mesocosm study using running natural seawater, it was found that chitosan/ZnO–SnOx/GA coatings enabled better inhibition of bacterial growth compared to chitosan coatings alone. This study demonstrates the antifouling potential of chitosan nanocomposite coatings containing core–shell nanoparticles as an effective solution for the prevention of biofouling.
Collapse
|
10
|
Wanka R, Koschitzki F, Puzovic V, Pahl T, Manderfeld E, Hunsucker KZ, Swain GW, Rosenhahn A. Synthesis and Characterization of Dendritic and Linear Glycol Methacrylates and Their Performance as Marine Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6659-6669. [PMID: 33497184 DOI: 10.1021/acsami.0c21212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PG4MA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy. The antifouling (AF) and fouling-release (FR) properties of the coatings were tested against the model organisms Cobetia marina and Navicula perminuta in laboratory-scale dynamic accumulation assays as well as in a dynamic short-term field exposure (DSFE) in the marine environment. In addition, the hydration of the coatings and their susceptibility toward silt uptake were evaluated, revealing a strong correlation between water uptake, silt incorporation, and field assay performance. While all glycol derivatives showed good resistance in laboratory settlement experiments, PPGMA turned out to be less susceptible to silt incorporation and outperformed PEGMA and PG4MA in the DSFE assay.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44780 Bochum, Germany
| | - Florian Koschitzki
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Vuk Puzovic
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Thorben Pahl
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Emily Manderfeld
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kelli Z Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
11
|
Vignesh V, Nguyen THH, Vanderwal L, Stafslien S, Brennan A. Tough amphiphilic antifouling coating based on acrylamide, fluoromethacrylate and non-isocyanate urethane dimethacrylate crosslinker. BIOFOULING 2021; 37:36-48. [PMID: 33487051 DOI: 10.1080/08927014.2020.1870110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
This study is focused on the development of tougher gels using combinations of acrylamide, fluoromethacrylate and a non-isocyanate urethane dimethacrylate (NIUDMA) crosslinker. The NIUDMA was tailored with 2, 3-epoxypropoxy propyl-polydimethylsiloxane segments E9 (MW = 0.36 kg mol-1), E11 (MW = 0.5-0.6 kg mol-1) and E12 (MW = 1-1.4 kg mol-1). A 3 level Taguchi design was used to evaluate the role of each component of the ternary copolymer gel on the elastic modulus and toughness. The toughness ranged from 2.5-7 MJ m-3 whereas the modulus ranged from 27-70 MPa. The formulations with the highest toughness and modulus were screened for their antifouling potential in biological assays against the microalga Navicula incerta and the bacterium Cellulophaga lytica. The E9 gels showed the best performance, achieving a 73% reduction in N. incerta cells and a 92% reduction in C. lytica biofilm remaining after water jetting treatments, when compared with the commercial Intersleek product IS700.
Collapse
Affiliation(s)
- Vishal Vignesh
- Department of Materials Science and Engineering, University of Florida, Gainesville, USA
| | - Thi Hoang Ha Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, USA
| | - Lyndsi Vanderwal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, USA
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, USA
| | - Anthony Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, USA
- Margaret A. Ross Professor of Materials Science & Engineering, Affiliate of Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Wanka R, Koc J, Clarke J, Hunsucker KZ, Swain GW, Aldred N, Finlay JA, Clare AS, Rosenhahn A. Sol-Gel-Based Hybrid Materials as Antifouling and Fouling-Release Coatings for Marine Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53286-53296. [PMID: 33180471 DOI: 10.1021/acsami.0c15288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media. Marine antifouling and fouling-release properties were tested in laboratory assays against the settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of the diatom Navicula incerta. Furthermore, laboratory data were confirmed in short-term dynamic field assays in Florida, USA. All hybrid coatings revealed a superior performance in the assays compared to a hydrophobic reference. Within the hybrids, those with the highest degree of hydrophilicity and negative net charge across the surface performed best. Alginate and heparin showed good performance, making these hybrid materials promising building blocks for fouling-resistant coatings.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Julian Koc
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
13
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
14
|
Guerin AJ, Clare AS. Mini-review: effect sizes and meta-analysis for antifouling research. BIOFOULING 2018; 34:1185-1199. [PMID: 30760037 DOI: 10.1080/08927014.2018.1550196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
It is widely recognised that findings from experimental studies should be replicated before their conclusions are accepted as definitive. In many research areas, synthesis of results from multiple studies is carried out via systematic review and meta-analysis. Some fields are also moving away from null hypothesis significance testing, which uses p values to identify 'significant' effects, towards an estimation approach concerned with effect sizes and confidence intervals. This review argues that these techniques are underused in biofouling and antifouling (AF) research and discusses potential benefits of their adoption. They enable comparison of test surfaces even when these are not tested simultaneously, and allow results from repeated tests on the same surfaces to be combined. They also enable the use of published data to explore effects of different variables on the functioning of AF surfaces. AF researchers should consider using these approaches and reporting results in ways that facilitate future research syntheses.
Collapse
Affiliation(s)
- Andrew J Guerin
- a School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK
| | - Anthony S Clare
- a School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
15
|
Song W, Li Z, Li Y, You H, Qi P, Liu F, Loy DA. Facile sol-gel coating process for anti-biofouling modification of poly (vinylidene fluoride) microfiltration membrane based on novel zwitterionic organosilica. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Chapelais-Baron M, Goubet I, Péteri R, Pereira MDF, Mignot T, Jabveneau A, Rosenfeld E. Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. MICROBIOLOGY-SGM 2018; 164:308-321. [PMID: 29458680 DOI: 10.1099/mic.0.000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant 'pointillistic' iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica's iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.
Collapse
Affiliation(s)
- Maylis Chapelais-Baron
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Isabelle Goubet
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Renaud Péteri
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, La Rochelle, France
| | - Maria de Fatima Pereira
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France.,Université de Caen Normandie, UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE Boulevard Becquerel, F-14032 Caen, France
| | - Tâm Mignot
- UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France
| | - Apolline Jabveneau
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Eric Rosenfeld
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
17
|
Multivariate analysis of attachment of biofouling organisms in response to material surface characteristics. Biointerphases 2017; 12:051003. [DOI: 10.1116/1.5008988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Draft Genome Sequence of the Iridescent Marine Bacterium Cellulophaga lytica CECT 8139. GENOME ANNOUNCEMENTS 2017; 5:5/36/e00811-17. [PMID: 28883133 PMCID: PMC5589527 DOI: 10.1128/genomea.00811-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some species of the genus Cellulophaga have been reported as having biotechnological interests and noteworthy physiological properties. We report here the draft genome sequence of Cellulophaga lytica CECT 8139, a bacterium that produces an intensely iridescent colony biofilm on agar surfaces.
Collapse
|
19
|
Thompson SEM, Coates JC. Surface sensing and stress-signalling in Ulva and fouling diatoms - potential targets for antifouling: a review. BIOFOULING 2017; 33:410-432. [PMID: 28508711 DOI: 10.1080/08927014.2017.1319473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Understanding the underlying signalling pathways that enable fouling algae to sense and respond to surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and diverse diatoms are important ecologically and economically as they are persistent biofoulers. Ulva spores exhibit rapid secretion, allowing them to adhere quickly and permanently to a ship, whilst diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly adaptable to different environmental conditions. There is evidence, now supported by molecular data, for complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved in surface sensing and/or adhesion. Moreover, adaptation to stress has profound effects on the biofouling capability of both types of organism. Targets for future antifouling coatings based on surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially universal antifouling strategy.
Collapse
Affiliation(s)
| | - Juliet C Coates
- a School of Biosciences , University of Birmingham , Birmingham , UK
| |
Collapse
|
20
|
Loriot M, Linossier I, Vallée-Réhel K, Faÿ F. Influence of Biodegradable Polymer Properties on Antifouling Paints Activity. Polymers (Basel) 2017; 9:E36. [PMID: 30970713 PMCID: PMC6432446 DOI: 10.3390/polym9020036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
The development of new antifouling paints requires understanding the parameters involved in antifouling activity and to develop new analytical tools for their evaluation. A series of biodegradable poly(ε-caprolactone-co-δ-valerolactone) copolymers varying by molecular weight and composition were synthesized, characterized and formulated as antifouling paints. The physico-chemical properties such as hydration, degradation, erosion and lixiviation of paints were studied. Microfouling (bacteria and microalgae) was observed by microscopic observations in a short delay, whereas macrofouling colonization was observed by visual inspection during one year. The antifouling activity of paints was modified by varying the composition and molecular weight of copolymer. The crystallinity appears to play a major role in antifouling activity, however the involvement of other properties such as hydration, degradation or erosion remains difficult to understand. Confocal laser scanning and scanning electron microscopes were used for the evaluation of antifouling paints. Results show that microalgae seem to be a pertinent indicator of antifouling activity.
Collapse
Affiliation(s)
- Marion Loriot
- Laboratoire Biotechnologie et Chimie Marines, Université Bretagne Sud, EA3884, LBCM, IUEM, 56321 Lorient CEDEX, France.
| | - Isabelle Linossier
- Laboratoire Biotechnologie et Chimie Marines, Université Bretagne Sud, EA3884, LBCM, IUEM, 56321 Lorient CEDEX, France.
| | - Karine Vallée-Réhel
- Laboratoire Biotechnologie et Chimie Marines, Université Bretagne Sud, EA3884, LBCM, IUEM, 56321 Lorient CEDEX, France.
| | - Fabienne Faÿ
- Laboratoire Biotechnologie et Chimie Marines, Université Bretagne Sud, EA3884, LBCM, IUEM, 56321 Lorient CEDEX, France.
| |
Collapse
|
21
|
Destino JF, Jones ZR, Gatley CM, Zhang Y, Craft AK, Detty MR, Bright FV. Hybrid Sol-Gel-Derived Films That Spontaneously Form Complex Surface Topographies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10113-10119. [PMID: 27607195 DOI: 10.1021/acs.langmuir.6b02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 μm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.
Collapse
Affiliation(s)
- Joel F Destino
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Zachary R Jones
- Department of Chemistry, Ithaca College , Ithaca, New York 14850, United States
| | - Caitlyn M Gatley
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Yi Zhang
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Andrew K Craft
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Michael R Detty
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Frank V Bright
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
22
|
Damon CA, Gatley CM, Beres JJ, Finlay JA, Franco SC, Clare AS, Detty MR. The performance of hybrid titania/silica-derived xerogels as active antifouling/fouling-release surfaces against the marine alga Ulva linza: in situ generation of hypohalous acids. BIOFOULING 2016; 32:883-896. [PMID: 27458654 DOI: 10.1080/08927014.2016.1203420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Mixed titania/silica xerogels were prepared using titanium tetraisopropoxide (TTIP) and tetraethoxy orthosilicate (TEOS). Xerogel properties were modified by incorporating n-octyltriethoxysilane (C8). The xerogels catalyze the oxidation of bromide and chloride with hydrogen peroxide (H2O2) to produce hypohalous acids at pH 7 and pH 8. The antifouling/ fouling-release performance of a TTIP/C8/TEOS xerogel in the presence and absence of H2O2 was evaluated for the settlement of zoospores of the marine alga Ulva linza and for the removal of sporelings (young plants). In the absence of H2O2, differences in the settlement of zoospores and removal of sporelings were not significant relative to a titanium-free C8/TEOS xerogel. Addition of H2O2 gave a significant reduction in zoospore settlement and sporeling removal relative to the C8/TEOS xerogel and relative to peroxide-free conditions. The impact of TTIP on xerogel characteristics was evaluated by comprehensive contact angle analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Corey A Damon
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Caitlyn M Gatley
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Joshua J Beres
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - John A Finlay
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Sofia C Franco
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- b School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Michael R Detty
- a Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| |
Collapse
|
23
|
Gatley CM, Muller LM, Lang MA, Alberto EE, Detty MR. Xerogel-sequestered silanated organochalcogenide catalysts for bromination with hydrogen peroxide and sodium bromide. Molecules 2015; 20:9616-39. [PMID: 26016550 PMCID: PMC6272488 DOI: 10.3390/molecules20069616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 11/28/2022] Open
Abstract
While H2O2 is a powerful oxidant, decomposing into environmentally benign H2O and O2, a catalyst is often required for reactions with H2O2 to proceed at synthetically useful rates. Organotellurium and organoselenium compounds catalyze the oxidation of halide salts to hypohalous acids using H2O2. When sequestered into xerogel monoliths, the xerogel-chalcogenide combinations have demonstrated increased catalytic activity relative to the organochalcogen compound alone in solution for the oxidation of halide salts to hypohalous acids with H2O2. Diorganotellurides, diorganoselenides, and diorganodiselenides bearing triethoxysilane functionalities were sequestered into xerogel monoliths and their catalytic activity and longevity were investigated. The longevity of the catalyst-xerogel combinations was examined by isolating and recycling the catalyst-xerogel combination. It was found tellurium-containing catalyst 3 and selenium-containing catalyst 8 maintained their catalytic activity through three recycling trials and adding electron-donating substituents to catalyst 3 also increased the catalytic rate. The presence of organotellurium and organoselenium groups in the +4 oxidation state was determined by X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Caitlyn M Gatley
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Lisa M Muller
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Meredith A Lang
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Eduardo E Alberto
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | - Michael R Detty
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
24
|
Martinelli E, Del Moro I, Galli G, Barbaglia M, Bibbiani C, Mennillo E, Oliva M, Pretti C, Antonioli D, Laus M. Photopolymerized Network Polysiloxane Films with Dangling Hydrophilic/Hydrophobic Chains for the Biofouling Release of Invasive Marine Serpulid Ficopomatus enigmaticus. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8293-8301. [PMID: 25835588 DOI: 10.1021/acsami.5b01522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Novel photopolymerized network films based on a polysiloxane matrix containing varied amounts of polyoxyethylene (P3) or perfluorohexylethyl (F) dangling side chains were investigated. For films containing less than 10 wt % P3 and F, the wettability and elastic modulus were similar to those of the photopolymerized network matrix. However, angle-resolved X-ray photoelectron spectroscopy measurements proved that the surface of films with F dangling chains was highly enriched in fluorine depending on both the amount of P3 and F and their relative ratio in the films. The biological performance of the films was evaluated against a new widespread and invasive marine biofoulant, the serpulid Ficopomatus enigmaticus. The diatom Navicula salinicola was also assayed as a conventional model organism for comparison. Films richer in P3 better resisted the settlement and promoted the release of calcified tubeworms of F. enigmaticus.
Collapse
Affiliation(s)
- Elisa Martinelli
- †Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56124 Pisa, Italy
| | - Ilaria Del Moro
- †Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56124 Pisa, Italy
| | - Giancarlo Galli
- †Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56124 Pisa, Italy
| | - Martina Barbaglia
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Carlo Bibbiani
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Elvira Mennillo
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Matteo Oliva
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Carlo Pretti
- ‡Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | - Diego Antonioli
- §Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15100 Alessandria, Italy
| | - Michele Laus
- §Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale, 15100 Alessandria, Italy
| |
Collapse
|
25
|
Destino JF, Gatley CM, Craft AK, Detty MR, Bright FV. Probing nanoscale chemical segregation and surface properties of antifouling hybrid xerogel films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3510-3517. [PMID: 25738416 DOI: 10.1021/la504993p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past decade there has been significant development in hybrid polymer coatings exhibiting tunable surface morphology, surface charge, and chemical segregation-all believed to be key properties in antifouling (AF) coating performance. While a large body of research exists on these materials, there have yet to be studies on all the aforementioned properties in a colocalized manner with nanoscale spatial resolution. Here, we report colocalized atomic force microscopy, scanning Kelvin probe microscopy, and confocal Raman microscopy on a model AF xerogel film composed of 1:9:9 (mol:mol:mol) 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and tetraethoxysilane (TEOS) formed on Al2O3. This AF film is found to consist of three regions that are chemically and physically unique in 2D and 3D across multiple length scales: (i) a 1.5 μm thick base layer derived from all three precursors; (ii) 2-4 μm diameter mesa-like features that are enriched in free amine (from APTES), depleted in the other species and that extend 150-400 nm above the base layer; and (iii) 1-2 μm diameter subsurface inclusions within the base layer that are enriched in hydrogen-bonded amine (from APTES) and depleted in the other species.
Collapse
Affiliation(s)
- Joel F Destino
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Caitlyn M Gatley
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Andrew K Craft
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Michael R Detty
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Frank V Bright
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
26
|
Complete Genome Sequence of Cellulophaga lytica HI1 Using PacBio Single-Molecule Real-Time Sequencing. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01148-14. [PMID: 25377716 PMCID: PMC4223467 DOI: 10.1128/genomea.01148-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete genome sequence of Cellulophaga lytica HI1 isolated from a seawater table located at the Kewalo Marine Laboratory (Honolulu, HI). This is the first complete de novo genome assembly of C. lytica HI1 using PacBio single-molecule real-time (SMRT) sequencing, which resulted in a single scaffold of 3.8 Mb.
Collapse
|
27
|
Zhou Z, Calabrese DR, Taylor W, Finlay JA, Callow ME, Callow JA, Fischer D, Kramer EJ, Ober CK. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. BIOFOULING 2014; 30:589-604. [PMID: 24730510 DOI: 10.1080/08927014.2014.897335] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw = 350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH). The resulting macromolecules were then used as side chains to covalently modify a pre-synthesized PS8 K-b-P(E/B)25 K-b-PI10 K (SEBI or K3) triblock copolymer, and the final polymers were applied to glass substrata through an established multilayer surface coating technique to prepare fouling resistant coatings. The coated surfaces were characterized with AFM, XPS and NEXAFS, and evaluated in laboratory assays with two important fouling algae, Ulva linza (a green macroalga) and Navicula incerta, a biofilm-forming diatom. The results suggest that these polymer-coated surfaces undergo surface reconstruction upon changing the contact medium (polymer/air vs polymer/water), due to the preferential interfacial aggregation of the PEG segment on the surface in water. The amphiphilic polymer-coated surfaces showed promising results as both AF and FR coatings. The sample with longer PEG chain lengths (Mw = 550 g mol(-1)) exhibited excellent properties against both algae, highlighting the importance of the chemical structures on ultimate biological performance. Besides reporting synthesis and characterization of this new type of amphiphilic surface material, this work also provides insight into the nature of PEG/hydrocarbon amphiphilic coatings, and this understanding may help in the design of future generations of fluorine-free, environmentally friendly AF/FR polymeric coatings.
Collapse
Affiliation(s)
- Zhaoli Zhou
- a Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yasani BR, Martinelli E, Galli G, Glisenti A, Mieszkin S, Callow ME, Callow JA. A comparison between different fouling-release elastomer coatings containing surface-active polymers. BIOFOULING 2014; 30:387-399. [PMID: 24579757 DOI: 10.1080/08927014.2013.878864] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend. Additionally, mechanical testing showed that the elastic modulus of SEBS-based coatings was one order of magnitude higher than that of the corresponding PDMS-based coatings. The coatings were subjected to laboratory bioassays with the marine alga Ulva linza. PDMS-based coatings had superior fouling-release properties compared to the SEBS-based coatings.
Collapse
Affiliation(s)
- B R Yasani
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Detty MR, Ciriminna R, Bright FV, Pagliaro M. Environmentally benign sol-gel antifouling and foul-releasing coatings. Acc Chem Res 2014; 47:678-87. [PMID: 24397288 DOI: 10.1021/ar400240n] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance.
Collapse
Affiliation(s)
- Michael R. Detty
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| | - Frank V. Bright
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
30
|
Hawkins ML, Faÿ F, Réhel K, Linossier I, Grunlan MA. Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles. BIOFOULING 2014; 30:247-258. [PMID: 24447301 DOI: 10.1080/08927014.2013.862235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silicone coatings with enhanced antifouling behavior towards bacteria, diatoms, and a diatom dominated slime were prepared by incorporating PEO-silane amphiphiles with varied siloxane tether lengths (a-c): α-(EtO)3Si(CH2)2-oligodimethylsiloxanen-block-poly(ethylene oxide)8-OCH3 [n = 0 (a), 4 (b), and 13 (c)]. Three modified silicone coatings (A-C) were prepared by the acid-catalyzed sol-gel cross-linking of a-c, respectively, each with a stoichiometric 2:3 M ratio of α, ω-bis(Si-OH)polydimethylsiloxane (Mn = 3,000 g mol(-1)). The coatings were exposed to the marine bacterium Bacillus sp.416 and the diatom (microalga) Cylindrotheca closterium, as well as a mixed community of Bacillus sp. and C. closterium. In addition, in situ microfouling was assessed by maintaining the coatings in the Atlantic Ocean. Under all test conditions, biofouling was reduced to the highest extent on coating C which was prepared with the PEO-silane amphiphile having the longest siloxane tether length (c).
Collapse
Affiliation(s)
- Melissa L Hawkins
- a Department of Biomedical Engineering , Texas A&M University , College Station , TX , USA
| | | | | | | | | |
Collapse
|
31
|
Gabilondo R, Graham H, Caldwell GS, Clare AS. Laboratory culture and evaluation of the tubeworm Ficopomatus enigmaticus for biofouling studies. BIOFOULING 2013; 29:869-878. [PMID: 23844848 DOI: 10.1080/08927014.2013.810214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ficopomatus enigmaticus, a euryhaline tube-building polychaete worm with a subtropical to temperate distribution, is an increasingly problematic fouling organism. In this study, laboratory protocols for maintaining adult broodstock, destructive spawning, larval culture and a settlement bioassay were developed. The method routinely yielded approximately 200 larvae per spawning adult. The mean number of eggs released by females was 1517 and the mean number of spermatozoids per male was 4.425 × 10(6). Fertilisation success, using an initial concentration of 2.5 × 10(6) spermatozoids and 45 eggs ml(-1), was 76% after a contact time of 60 min. The first cleavage occurred after 20 min and the trocophore larval stage was attained by 18 h. Metatrochophores were observed 4 d post-fertilisation and were competent to settle 1 day later. The proportion of larvae that settled after 48 h was surface-dependent: 10.24% on glass, 1.39% on polystyrene and 11.07% on a poly(dimethylsiloxane) elastomer. The presence of a biofilm on glass increased the rate of settlement 7-fold compared to clean glass.
Collapse
Affiliation(s)
- Regina Gabilondo
- School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | |
Collapse
|
32
|
Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M. The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications. Chem Rev 2013; 113:6592-620. [DOI: 10.1021/cr300399c] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La
Malfa 153, 90146 Palermo, Italy
| | - Alexandra Fidalgo
- Centro de Química-Física
Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Complexo I, Av.
Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Valerica Pandarus
- SiliCycle Inc., 2500, Parc-Technologique
Boulevard, Quebec City, Quebec G1P 4S6,
Canada
| | - François Béland
- SiliCycle Inc., 2500, Parc-Technologique
Boulevard, Quebec City, Quebec G1P 4S6,
Canada
| | - Laura M. Ilharco
- Centro de Química-Física
Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Complexo I, Av.
Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La
Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
33
|
Abstract
Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.
Collapse
Affiliation(s)
- Kei Kamino
- Department of Biotechnology, National Institute of Technology and Evaluation, Kisarazu, Japan.
| |
Collapse
|
34
|
Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae. BIOFOULING 2012; 28:953-968. [PMID: 23004017 DOI: 10.1080/08927014.2012.723696] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous studies have shown that bacterial biofilms formed from natural seawater (NSW) enhance the settlement of spores of the green alga Ulva linza, while single-species biofilms may enhance or reduce settlement, or have no effect at all. However, the effect of biofilms on the adhesion strength of algae, and how that may be influenced by coating/surface properties, is not known. In this study, the effect of biofilms formed from natural seawater and the marine bacterium Cobetia marina, on the settlement and the adhesion strength of spores and sporelings of the macroalga U. linza and the diatom Navicula incerta, was evaluated on Intersleek(®) 700, Intersleek(®) 900, poly(dimethylsiloxane) and glass. The settlement and adhesion strength of these algae were strongly influenced by biofilms and their nature. Biofilms formed from NSW enhanced the settlement (attachment) of both algae on all the surfaces while the effect of biofilms formed from C. marina varied with the coating type. The adhesion strength of spores and sporelings of U. linza and diatoms was reduced on all the surfaces biofilmed with C. marina, while adhesion strength on biofilms formed from NSW was dependent on the alga (and on its stage of development in the case of U. linza), and coating type. The results illustrate the complexity of the relationships between fouling algae and bacterial biofilms and suggest the need for caution to avoid over-generalisation.
Collapse
Affiliation(s)
- Sophie Mieszkin
- School of Biosciences, University of Birmingham, Birmingham B12 2TT, UK.
| | | | | | | |
Collapse
|