1
|
Borrego S, Vivar I, Molina A. Air- and dustborne fungi in repositories of the National Archive of the Republic of Cuba. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:103-122. [PMID: 35647176 PMCID: PMC9113668 DOI: 10.15698/mic2022.05.776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022]
Abstract
This study has as objectives to determine the concentration and diversity of the air- and dustborne mycobiota in seven National Archive of the Republic of Cuba repositories, and to assess the potential risk of biodeterioration that isolated taxa may have. In the indoor and outdoor environmental microbiological samplings a SAS biocollector was used and the indoor/outdoor (I/O) ratio was determined for each repository. The settled dust was collected during six months. Sørensen's coefficient of similarity (QS) was calculated to compare the isolated taxa among the three studied niches (indoor air, dust, outdoor air). The biodegradation potential of the isolated taxa was determined by semi-quantitative tests. The concentrations in the air of repositories with natural cross-ventilation ranged from 225.2-750.3 CFU m-3, while in the Map library with air-conditioning the concentration was significantly lower. The I/O ratios ranged from 0.1-1.7 revealing different environmental qualities. The maximum settled dust load was 22.8 mg/m2/day with a top fungal concentration of 6000 CFU g-1. 14 and eleven genera were detected in the air and dust respectively with predominance of the genera Aspergillus, Cladosporium and Penicillium. A QS of 0.8 was obtained between the indoor and the outdoor environments with eleven taxa similar evidencing the incidence of outdoors on the indoor mycobiota. The isolated taxa showed several biodeteriogenic attributes highlighting twelve and 14 taxa from indoor air and dust respectively with positive results for the five tests performed. This demonstrates the potential risk that fungal environmental represent for the preserved documentary heritage.
Collapse
Affiliation(s)
- Sofia Borrego
- Conservation Preventive Laboratory, National Archive of the Republic of Cuba, Havana, Cuba
| | - Isbel Vivar
- Conservation Preventive Laboratory, National Archive of the Republic of Cuba, Havana, Cuba
| | - Alian Molina
- Conservation Preventive Laboratory, National Archive of the Republic of Cuba, Havana, Cuba
| |
Collapse
|
2
|
Savoldelli S, Cattò C, Villa F, Saracchi M, Troiano F, Cortesi P, Cappitelli F. Biological risk assessment in the History and Historical Documentation Library of the University of Milan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148204. [PMID: 34380242 DOI: 10.1016/j.scitotenv.2021.148204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
There are billions of books that in recent and in ancient times have been produced by the human race containing evidence of its intellectual and cultural efforts. Even when stored in libraries, not all these books survive over time undamaged, because in the biosphere their materials are potential nutrients. This is the unfortunate case of the History and Historical Documentation Library of the University of Milan, where biological agents have badly affected rare and valuable old books. An entomological monitoring was carried out using sticky traps and collecting insects during inspections. The beetle Gastrallus pubens Fairmaire, rarely identified in European libraries so far, was the main biological agent responsible for the book damage, since several tunnels due to larval activity and holes made by adults were observed. Using the Illumina MiSeq sequencing technology, Proteobacteria, Firmicutes and Actinobacteria were found to be the most abundant phyla. Ascomycota was the dominant phylum among three fungal phyla. As bacteria and fungi spread by the insects are primary indications of the insect presence in the library, in this paper a potential biomarker able to detect the G. pubens presence before visible infestation was searched for among the bacterial and fungal community peculiar in the insect frass and gut, but also found on books and the surfaces of shelves. Symbiotaphrina, an ascomycete fungus described as one of the symbiotic levuliform fungi, present in the anobiid beetles' gut, was the only one found in all samples analyzed and has therefore been proposed as a putative biomarker.
Collapse
Affiliation(s)
- Sara Savoldelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Cristina Cattò
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Federica Troiano
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
3
|
Karakasidou K, Nikolouli K, Amoutzias GD, Pournou A, Manassis C, Tsiamis G, Mossialos D. Microbial diversity in biodeteriorated Greek historical documents dating back to the 19th and 20th century: A case study. Microbiologyopen 2018; 7:e00596. [PMID: 29484839 PMCID: PMC6182554 DOI: 10.1002/mbo3.596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
Paper documents in archives, libraries, and museums often undergo biodeterioration by microorganisms. Fungi and less often bacteria have been described to advance paper staining, so called “foxing” and degradation of paper substrates. In this study, for the first time, the fungal and bacterial diversity in biodeteriorated paper documents of Hellenic General State Archives dating back to the 19th and 20th century has been assessed by culture‐dependent and independent methods. The internally transcribed spacer (ITS) region and 16S rRNA gene were amplified by PCR from fungal and bacterial isolates and amplicons were sequenced. Sequence analysis and phylogeny revealed fungal phylotypes like Penicillium sp., Cladosporium sp., Penicillium citrinum, Alternaria infectoria, Alternaria alternata, Epicoccum nigrum, and Penicillium chrysogenum which are often implicated in paper deterioration. Bacterial phylotypes closely related to known biodeteriogenic bacteria such as Bacillus spp., Micrococcus spp., Kocuria sp. in accordance with previous studies were characterized. Among the fungal phylotypes described in this study are included well‐known allergens such as Penicillium spp., Alternaria spp., and Cladosporium spp. that impose a serious health threat on staff members and scholars. Furthermore, fungal isolates such as Chalastospora gossypii and Trametes ochracea have been identified and implicated in biodeterioration of historical paper manuscripts in this study for the first time. Certain new or less known fungi and bacteria implicated in paper degradation were retrieved, indicating that particular ambient conditions, substrate chemistry, or even location might influence the composition of colonizing microbiota.
Collapse
Affiliation(s)
- Kiriaki Karakasidou
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Katerina Nikolouli
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Grigoris D Amoutzias
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Anastasia Pournou
- Department of Conservation of Antiquities and Works of Art, Technological Educational Institute of Athens, Athens, Greece
| | - Christos Manassis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Dimitris Mossialos
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
4
|
Lavin P, de Saravia SG, Guiamet P. Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: Evaluation of Their Biodeterioration Ability and Antifungal Effect of Two Essential Oils. MICROBIAL ECOLOGY 2016; 71:628-633. [PMID: 26500067 DOI: 10.1007/s00248-015-0688-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Fungi produce pigments and acids, generating particular local conditions which modify the physicochemical properties of materials. The aims of this work are (i) to investigate bioadhesion, foxing production and biofilm formation by Scopulariopsis sp. and Fusarium sp. isolated from document collections under laboratory conditions; (ii) to verify attack on cellulose fibres and (iii) to study the possibility of reducing fungal growth using natural products. Biofilm formation and extracellular polymeric substance (EPS) production by fungi were demonstrated in laboratory assays and by scanning electron microscopy (SEM) observations. The biocidal activity of two essential oils of Origanum vulgare L. and Thymus vulgaris L. was evaluated using the microatmosphere method. SEM observations showed that these strains were able to attach to paper and form biofilms, causing damage on them, which demonstrates the biodeterioration ability of these microorganisms. Scopulariopsis sp. and Fusarium sp. isolated from paper books showed the formation of fox-like reddish-brown colour spots, attack to the paper structure and pigment production on aged paper samples. The strains tested produced a decrease in the pH of one unit. This would substantiate the effect of the strains in paper biodeterioration. The microatmosphere method showed that volatile compounds of the essential oils have antifungal activity.
Collapse
Affiliation(s)
- Paola Lavin
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, C.C. 16, Suc.4 (1900), La Plata, Argentina
| | - Sandra Gómez de Saravia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, C.C. 16, Suc.4 (1900), La Plata, Argentina
- Facultad de Ciencias Naturales y Museo-UNLP-CICBA, La Plata, Argentina
| | - Patricia Guiamet
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, C.C. 16, Suc.4 (1900), La Plata, Argentina.
- Facultad de Ciencias Veterinarias-UNLP-CONICET, La Plata, Argentina.
| |
Collapse
|
5
|
Borrego S, Perdomo I. Airborne microorganisms cultivable on naturally ventilated document repositories of the National Archive of Cuba. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3747-3757. [PMID: 26498813 DOI: 10.1007/s11356-015-5585-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
The quality of the indoor air can provide very useful information for the artwork conservation. The aim of the study was to evaluate the microbial concentration inside six document repositories of the National Archive of the Republic of Cuba in two months of 1 year. The repositories are large, high, and have a natural cross-ventilation system. The microbial sampling was done in July 2010 (summer or rainy month) and February 2011 (winter or dry month) using the SAS Super 100 biocollector at 100 L/min. An appropriate selective culture media were used to isolate fungi and bacteria. A high total microbial concentration on the north side of the building in two studied months was observed. The fungal concentrations were significantly higher in July 2010 in all repositories, while the bacterial concentrations were significantly higher mostly in February 2011 only in repositories located on the first and second floor of the building. Eight fungal genera in the indoor air of all environments were isolated. Regardless of the side of the analyzed building, Penicillium, Aspergillus, and Cladosporium were the predominant genera. Aspergillus flavus and Aspergillus niger were the species isolated in almost all of the analyzed repositories in the studied months. Gram-positive bacteria prevailed among bacterial groups isolated from indoor air repositories, and some percentages corresponded to the genera Bacillus and Streptomyces. In Cuba, the temperature and relative humidity are high during the whole year but the natural ventilation plays an important role in retarding microbial growth on materials.
Collapse
Affiliation(s)
- Sofía Borrego
- Laboratory of Preventive Conservation, National Archive of the Republic of Cuba, Havana, Cuba.
| | - Ivette Perdomo
- Laboratory of Preventive Conservation, National Archive of the Republic of Cuba, Havana, Cuba
| |
Collapse
|
6
|
Guiamet P, Igareta A, Battistoni P, de Saravia SG. Fungi and bacteria in the biodeterioration of archeological fibers. Analysis using different microscopic techniques. Rev Argent Microbiol 2015; 46:376-7. [PMID: 25576423 DOI: 10.1016/s0325-7541(14)70097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Patricia Guiamet
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, cc 16 SSuc 4 (1900) La Plata, Argentina; Facultad de Ciencias Veterinarias, UNLP, CCT La Plata-CONICET, La Plata, Argentina
| | - Ana Igareta
- División Arqueología, Museo de La Plata. FCNyM, UNLP, CCT La Plata-CONICET, La Plata, Argentina
| | - Patricia Battistoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, cc 16 SSuc 4 (1900) La Plata, Argentina
| | - Sandra Gómez de Saravia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, UNLP, CCT La Plata-CONICET, cc 16 SSuc 4 (1900) La Plata, Argentina; Facultad de Ciencias Naturales y Museo, UNLP, CIC, La Plata, Argertina.
| |
Collapse
|
7
|
Piñar G, Sterflinger K, Ettenauer J, Quandt A, Pinzari F. A combined approach to assess the microbial contamination of the archimedes palimpsest. MICROBIAL ECOLOGY 2015; 69:118-34. [PMID: 25135817 PMCID: PMC4287661 DOI: 10.1007/s00248-014-0481-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/06/2014] [Indexed: 05/10/2023]
Abstract
A combined approach, using molecular and microscopic techniques, was used to identify the microbiota associated with the Archimedes Palimpsest, an unusual parchment manuscript. SEM analyses revealed the microbial damage to the collagen fibers and the presence of characteristic cell chains typical of filamentous bacteria and fungal spores. Molecular analysis confirmed a homogeneous bacterial community colonizing the manuscript. The phyla Proteobacteria and Actinobacteria were associated with this ancient parchment; the sequences were most related to uncultured clones detected in the human skin microbiome and in ephitelium, and to cultivated species of the genera Acinetobacter and Nocardiopsis. Nevertheless, a great variation was observed among the different sampled areas indicating fungal diversity. Blumeria spp. dominated in the healthy areas of the parchment while degraded areas showed disparate fungal communities, with dominant members of the genera Mucor and Cladosporium. In addition, the quantification of the β-actin gene by real-time PCR analyses (qPCR) revealed a higher fungal abundance on degraded areas than on the healthy ones.
Collapse
Affiliation(s)
- Guadalupe Piñar
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Katja Sterflinger
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Jörg Ettenauer
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Abigail Quandt
- The Walters Art Museum, Book and Paper Conservation, 600 North Charles St., Baltimore, MD 21201 USA
| | - Flavia Pinzari
- Laboratorio di Biologia, Ministero per i Beni e le Attivita Culturali, Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario (ICRCPAL), Via Milano 76, 00184 Rome, Italy
- Present Address: Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di ricerca per lo studio delle relazioni tra pianta e suolo, Via della Navicella 2-4, 00184 Rome, Italy
| |
Collapse
|