1
|
Bai QX, Zhang ZJ, Tang HP, Yang BY, Kuang HX, Wang M. Dryopteris crassirhizoma Nakai.: A review of its botany, traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118109. [PMID: 38570147 DOI: 10.1016/j.jep.2024.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Dryopteris crassirhizoma Nakai., a commonly used herb, is known as "Guan Zhong" in China, "Oshida" in Japan and "Gwanjung" in Korea. It has long been used for parasitic infestation, hemorrhages and epidemic influenza. AIM OF THE REVIEW The present paper aims to provide an up-to-date review at the advancements of the investigations on the traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma. Besides, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS Relevant information on traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and China National Knowledge Infrastructure. 109 papers included in the article and we determined that no major information was missing after many checks. All authors participated in the review process for this article and all research paper are from authoritative published materials and electronic databases. RESULTS 130 chemical components, among which phloroglucinols are the predominant groups, have been isolated and identified from D. crassirhizoma. D. crassirhizoma with its bioactive compounds is possessed of extensive biological activities, including anti-parasite, anti-microbial, anti-viral, anti-cancer, anti-inflammatory, anti-oxidant, anti-diabetic, bone protective, immunomodulatory, anti-platelet and anti-hyperuricemia activity. Besides, D. crassirhizoma has special toxicology and pharmacokinetics characterization. CONCLUSIONS D. crassirhizoma is a traditional Chinese medicine having a long history of application. This review mainly summarized the different chemical components extract from D. crassirhizoma and various reported pharmacological effects. Besides, the toxicology and pharmacokinetics of D. crassirhizoma also be analysed in this review. However, the chemical components of D. crassirhizoma are understudied and require further research to expand its medicinal potential, and it is urgent to design a new extraction scheme, so that the active ingredients can be obtained at a lower cost.
Collapse
Affiliation(s)
- Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
2
|
Lipid-rich endo-metabolites from a vertically transmitted fungal endophyte Penicillium sp. PM031 attenuate virulence factors of phytopathogenic Ralstonia solanacearum. Microbiol Res 2022; 261:127058. [DOI: 10.1016/j.micres.2022.127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
3
|
Cepas V, Gutiérrez-Del-Río I, López Y, Redondo-Blanco S, Gabasa Y, Iglesias MJ, Soengas R, Fernández-Lorenzo A, López-Ibáñez S, Villar CJ, Martins CB, Ferreira JD, Assunção MFG, Santos LMA, Morais J, Castelo-Branco R, Reis MA, Vasconcelos V, López-Ortiz F, Lombó F, Soto SM. Microalgae and Cyanobacteria Strains as Producers of Lipids with Antibacterial and Antibiofilm Activity. Mar Drugs 2021; 19:md19120675. [PMID: 34940674 PMCID: PMC8709229 DOI: 10.3390/md19120675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.
Collapse
Affiliation(s)
- Virginio Cepas
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain; (V.C.); (Y.L.); (Y.G.)
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-D.-R.); (S.R.-B.); (A.F.-L.); (S.L.-I.); (C.J.V.); (F.L.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Principality of Asturias, 33006 Oviedo, Spain
- ISPA (Instituto de Investigaciones Sanitarias del Principado de Asturias), Principality of Asturias, 33011 Oviedo, Spain
| | - Yuly López
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain; (V.C.); (Y.L.); (Y.G.)
| | - Saúl Redondo-Blanco
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-D.-R.); (S.R.-B.); (A.F.-L.); (S.L.-I.); (C.J.V.); (F.L.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Principality of Asturias, 33006 Oviedo, Spain
- ISPA (Instituto de Investigaciones Sanitarias del Principado de Asturias), Principality of Asturias, 33011 Oviedo, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain; (V.C.); (Y.L.); (Y.G.)
| | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain; (M.J.I.); (R.S.); (F.L.-O.)
| | - Raquel Soengas
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain; (M.J.I.); (R.S.); (F.L.-O.)
| | - Andrés Fernández-Lorenzo
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-D.-R.); (S.R.-B.); (A.F.-L.); (S.L.-I.); (C.J.V.); (F.L.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Principality of Asturias, 33006 Oviedo, Spain
- ISPA (Instituto de Investigaciones Sanitarias del Principado de Asturias), Principality of Asturias, 33011 Oviedo, Spain
| | - Sara López-Ibáñez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-D.-R.); (S.R.-B.); (A.F.-L.); (S.L.-I.); (C.J.V.); (F.L.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Principality of Asturias, 33006 Oviedo, Spain
- ISPA (Instituto de Investigaciones Sanitarias del Principado de Asturias), Principality of Asturias, 33011 Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-D.-R.); (S.R.-B.); (A.F.-L.); (S.L.-I.); (C.J.V.); (F.L.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Principality of Asturias, 33006 Oviedo, Spain
- ISPA (Instituto de Investigaciones Sanitarias del Principado de Asturias), Principality of Asturias, 33011 Oviedo, Spain
| | - Clara B. Martins
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal; (C.B.M.); (J.D.F.); (M.F.G.A.); (L.M.A.S.)
- “Molecular Physical-Chemistry” R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana D. Ferreira
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal; (C.B.M.); (J.D.F.); (M.F.G.A.); (L.M.A.S.)
| | - Mariana F. G. Assunção
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal; (C.B.M.); (J.D.F.); (M.F.G.A.); (L.M.A.S.)
| | - Lília M. A. Santos
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal; (C.B.M.); (J.D.F.); (M.F.G.A.); (L.M.A.S.)
| | - João Morais
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (R.C.-B.); (M.A.R.); (V.V.)
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (R.C.-B.); (M.A.R.); (V.V.)
| | - Mariana A. Reis
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (R.C.-B.); (M.A.R.); (V.V.)
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (R.C.-B.); (M.A.R.); (V.V.)
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Fernando López-Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain; (M.J.I.); (R.S.); (F.L.-O.)
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-D.-R.); (S.R.-B.); (A.F.-L.); (S.L.-I.); (C.J.V.); (F.L.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Principality of Asturias, 33006 Oviedo, Spain
- ISPA (Instituto de Investigaciones Sanitarias del Principado de Asturias), Principality of Asturias, 33011 Oviedo, Spain
| | - Sara M. Soto
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain; (V.C.); (Y.L.); (Y.G.)
- Correspondence: ; Tel.: +34-932275400
| |
Collapse
|
4
|
Modification of the Lipid Profile of the Initial Oral Biofilm In Situ Using Linseed Oil as Mouthwash. Nutrients 2021; 13:nu13030989. [PMID: 33808527 PMCID: PMC8003129 DOI: 10.3390/nu13030989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are of interest for the targeted modification of oral bioadhesion processes. Therefore, the sustainable effects of linseed oil on the composition and ultrastructure of the in situ pellicle were investigated. Unlike saliva, linseed oil contains linolenic acid (18:3), which served as a marker for lipid accumulation. Individual splints with bovine enamel slabs were worn by five subjects. After 1 min of pellicle formation, rinses were performed with linseed oil for 10 min, and the slabs' oral exposure was continued for up to 2 or 8 h. Gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS) was used to characterize the fatty acid composition of the pellicle samples. Transmission electron microscopy was performed to analyze the ultrastructure. Extensive accumulation of linolenic acid was recorded in the samples of all subjects 2 h after the rinse and considerable amounts persisted after 8 h. The ultrastructure of the 2 h pellicle was less electron-dense and contained lipid vesicles when compared with controls. After 8 h, no apparent ultrastructural effects were visible. Linolenic acid is an excellent marker for the investigation of fatty acid accumulation in the pellicle. New preventive strategies could benefit from the accumulation of lipid components in the pellicle.
Collapse
|
5
|
Supardy NA, Ibrahim D, Mat Nor SR, Noordin WNM. Bioactive Compounds of Pseudoalteromonas sp. IBRL PD4.8 Inhibit Growth of Fouling Bacteria and Attenuate Biofilms of Vibrio alginolyticus FB3. Pol J Microbiol 2019; 68:21-33. [PMID: 31050250 PMCID: PMC7256726 DOI: 10.21307/pjm-2019-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacterial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selected fouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7 mm and minimal inhibitory concentrations of 0.13 to 8.0 mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37 ± 4.88% and 29.85 ± 2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C16H24O2). Therefore, this compound was suggested as a potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V. alginolyticus FB3.
Collapse
Affiliation(s)
- Nor Afifah Supardy
- Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia , Penang , Malaysia
| | - Darah Ibrahim
- Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia , Penang , Malaysia
| | - Sharifah Radziah Mat Nor
- Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia , Penang , Malaysia
| | | |
Collapse
|
6
|
Quorum sensing inhibitory activity of the metabolome from endophytic Kwoniella sp. PY016: characterization and hybrid model-based optimization. Appl Microbiol Biotechnol 2018; 102:7389-7406. [PMID: 29934653 DOI: 10.1007/s00253-018-9168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
Quorum sensing, the microbial communication system, is gaining importance as a therapeutic target against pathogens. The two key reasons for the rising demand of quorum sensing (QS) inhibitory molecules are low selective pressure to develop resistance by pathogens and possibility of more species-specific effects. Due to complex interactions in a unique niche of live plant tissues, endophytes, as a survival mechanism, potentially produce various bioactive compounds such as QS inhibitors. We report the isolation of an endophytic fungus Kwoniella sp. PY016 from the medicinal plant "Bahera" (Terminalia bellirica), which exhibits substantial quorum sensing inhibition and anti-biofilm activities against the standard test organism, Chromobacterium violaceum. Sugar, sugar alcohol, carboxylic acid, lipid, and phenolic classes of metabolites (predominantly xylitol) are responsible components of the metabolome for the desired bioactivity. A judicious combination of single-factor-at-a-time strategy and artificial neural network modeling combined with genetic algorithm was employed for the selection and optimization of the critical process and medium parameters. Through this newly adopted hybrid model-based optimization, the quorum sensing inhibitory activity of the endophytic metabolome was increased by ~ 30%. This is the first report on optimization of QS inhibitory activity from any fungal endophyte using such a hybrid advanced approach.
Collapse
|
7
|
Chen L, Qian PY. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012. Mar Drugs 2017; 15:md15090264. [PMID: 28846624 PMCID: PMC5618403 DOI: 10.3390/md15090264] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N-acyl homoserine lactone for quorum sensing and intracellular Ca2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
8
|
Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, Wang R, Yao H, Cao J, Cornara L, Burlando B, Wang Y, Xiao J, Coutinho HDM. Phytochemicals from fern species: potential for medicine applications. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:379-440. [PMID: 32214919 PMCID: PMC7089528 DOI: 10.1007/s11101-016-9488-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023]
Abstract
Ferns are an important phytogenetic bridge between lower and higher plants. Historically they have been used in many ways by humans, including as ornamental plants, domestic utensils, foods, and in handicrafts. In addition, they have found uses as medicinal herbs. Ferns produce a wide array of secondary metabolites endowed with different bioactivities that could potentially be useful in the treatment of many diseases. However, there is currently relatively little information in the literature on the phytochemicals present in ferns and their pharmacological applications, and the most recent review of the literature on the occurrence, chemotaxonomy and physiological activity of fern secondary metabolites was published over 20 years ago, by Soeder (Bot Rev 51:442-536, 1985). Here, we provide an updated review of this field, covering recent findings concerning the bioactive phytochemicals and pharmacology of fern species.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Xin Wang
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234 China
| | | | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Huankai Yao
- School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004 China
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Jianguo Cao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234 China
| | - Laura Cornara
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita, Polo Botanico, Università degli Studi di Genova, Corso Dogali 1M, 16136 Genoa, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genoa, Italy
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri–URCA, Crato, CE Brazil
| |
Collapse
|
9
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
10
|
Martínez Díaz Y, Vanegas Laverde G, Reina Gamba L, Mayorga Wandurraga H, Arévalo-Ferro C, Ramos Rodríguez F, Duque Beltrán C, Castellanos Hernández L. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|