1
|
Sampaio C, Delbem ACB, Hosida TY, Fernandes AVP, do Amaral B, de Morais LA, Monteiro DR, Pessan JP. Amount of Dentifrice and Fluoride Concentration Affect the pH and Inorganic Composition of Dual-Species Biofilms of Streptococcus mutans and Candida albicans. Pharmaceutics 2024; 16:562. [PMID: 38675223 PMCID: PMC11054664 DOI: 10.3390/pharmaceutics16040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 04/28/2024] Open
Abstract
This work assessed the influence of the amount of dentifrice and fluoride (F) concentration in the product on the pH and inorganic components of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated with suspensions of fluoride dentifrices containing 550 or 1100 ppm of F (550 F or 1100 F, respectively) administered at comparable intensities: (i-1) 550 F/0.08 g or 1100 F/0.04 g; (i-2) 550 F/0.16 g or 1100 F/0.08 g; and (i-3) 550 F/0.32 g or 1100 F/0.16 g. A placebo dentifrice (without NaF, 0.32 g) was used as a negative control. After the last treatment, the biofilm pH was measured and the F, calcium (Ca), and phosphorus (P) concentrations were determined. Data were subjected to an ANOVA/Kruskal-Wallis test, and a Student-Newman-Keuls test. The highest biofilm pH and F concentrations (biomass and fluid) were observed for 1100 F at i-3. Overall, 1100 F resulted in F levels similar to 550 F for i-1 and i-2. In addition, 550 F applied at i-2 and i-3 led to higher F in the biomass/fluid compared to 1100 F applied at i-1 and i-2, respectively. In biomass, the lowest Ca concentrations were observed for 1100 F at i-3. The conclusion drawn is that the treatment intensity holds greater significance as a parameter compared to the concentration of F or the amount of dentifrice when considered individually.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Ana Vitória Pereira Fernandes
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Bruna do Amaral
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Leonardo Antônio de Morais
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
- Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-920, SP, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (A.C.B.D.); (T.Y.H.); (A.V.P.F.); (B.d.A.); (L.A.d.M.); (D.R.M.); (J.P.P.)
| |
Collapse
|
2
|
Jin P, Wang L, Chen D, Chen Y. Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence. J Oral Microbiol 2024; 16:2339161. [PMID: 38606339 PMCID: PMC11008315 DOI: 10.1080/20002297.2024.2339161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Objective To explore the mechanisms underlying the virulence changes in early childhood caries (ECC) caused by Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), with a focus on carbohydrate metabolism and environmental acidification. Methods A review of literature was conducted to understand the symbiotic relationship between C. albicans and S. mutans, and their role in the pathogenesis of ECC. The review also examined how their interactions influence carbohydrate metabolism and environmental acidification in the oral cavity. Results C. albicans and S. mutans play crucial roles in the onset and progression of ECC. C. albicans promotes the adhesion and accumulation of S. mutans, while S. mutans creates an environment favorable for the growth of C. albicans. Their interactions, especially through carbohydrate metabolism, strengthen their pathogenic potential. The review highlights the importance of understanding these mechanisms for the development of effective management and treatment protocols for ECC. Conclusion The symbiotic relationship between C. albicans and S. mutans, and their interactions through carbohydrate metabolism and environmental acidification, are key factors in the pathogenesis of ECC. A comprehensive understanding of these mechanisms is crucial for developing effective strategies to manage and treat ECC.
Collapse
Affiliation(s)
- Pingping Jin
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Lu Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| |
Collapse
|
3
|
Vieira APM, Danelon M, Fernandes GL, Berretta AA, Buszinski AFM, Dos Santos L, Delbem ACB, Barbosa DB. Pomegranate extract in polyphosphate-fluoride mouthwash reduces enamel demineralization. Clin Oral Investig 2024; 28:119. [PMID: 38277034 DOI: 10.1007/s00784-024-05495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/06/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVES To evaluate the anti-demineralizing effect of a mouthwash comprising pomegranate peel extract (PPE 3%), sodium trimetaphosphate (TMP 0.3%), and fluoride (F 225 ppm) in an in situ study, and to assess its irritation potential in an ex vivo study. METHODS This double-blind crossover study was conducted in four phases with 7 days each. Twelve volunteers used palatal appliances containing enamel blocks, which were subjected to cariogenic challenges. The ETF formulation (PPE + TMP + F, pH 7.0), TF formulation (TMP + F, pH 7.0), deionized water (W, pH 7.0), and essential oil commercial mouthwash (CM, 220 ppm F, pH 4.3) were dropped onto the enamel twice daily. The percentage of surface hardness loss, integrated loss of subsurface hardness, calcium, phosphorus, and fluoride in enamel and biofilms were determined. In addition, alkali-soluble extracellular polysaccharide concentrations were analyzed in the biofilms. The irritation potential was evaluated using the hen's egg chorioallantoic membrane test through the vascular effect produced during 300-s of exposure. RESULTS ETF was the most efficacious in preventing demineralization. It also showed the highest concentrations of calcium and phosphorus in the enamel and in the biofilm, as well as the lowest amount of extracellular polysaccharides in the biofilm. In the eggs, ETF produced light reddening, whereas CM led to hyperemia and hemorrhage. CONCLUSIONS The addition of PPE to formulations containing TMP and F increased its anti-demineralizing property, and this formulation presented a lower irritation potential than the CM. CLINICAL RELEVANCE ETF can be a promising alternative alcohol-free mouthwash in patients at high risk of caries.
Collapse
Affiliation(s)
- Ana Paula Miranda Vieira
- Graduate Program of Dental Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Marcelle Danelon
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Gabriela Lopes Fernandes
- Graduate Program of Dental Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | | | | | - Lucinéia Dos Santos
- Department of Biotechnology, São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, José Bonifácio 1193, Araçatuba, 16015-050, Brazil.
| |
Collapse
|
4
|
Flemming J, Hannig C, Hannig M. Caries Management-The Role of Surface Interactions in De- and Remineralization-Processes. J Clin Med 2022; 11:jcm11237044. [PMID: 36498618 PMCID: PMC9737279 DOI: 10.3390/jcm11237044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Bioadhesion and surface interactions on enamel are of essential relevance for initiation, progression and prevention of caries and erosions. Salivary proteins on and within initial carious and erosive lesions can facilitate or aggravate de- and remineralization. This applies for the pellicle layer, the subsurface pellicle and for proteins within initial carious lesions. Little is known about these proteinaceous structures related to initial caries and erosion. Accordingly, there is a considerable demand for an understanding of the underlying processes occurring at the interface between the tooth surface and the oral cavity in order to develop novel agents that limit and modulate caries and erosion. Objectives and findings: The present paper depicts the current knowledge of the processes occurring at the interface of the tooth surface and the oral fluids. Proteinaceous layers on dental hard tissues can prevent or aggravate demineralization processes, whereas proteins within initial erosive or carious lesions might hinder remineralization considerably and restrict the entry of ions into lesions. CONCLUSIONS Despite the fact that organic-inorganic surface interactions are of essential relevance for de- and remineralization processes at the tooth surface, there is limited knowledge on these clinically relevant phenomena. Accordingly, intensive research is necessary to develop new approaches in preventive dentistry.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
- Correspondence:
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
5
|
Fernandes GL, Vieira APM, Danelon M, Emerenciano NG, Berretta AA, Buszinski AFM, Hori JI, de Lima MHF, dos Reis TF, de Lima JA, Delbem ACB, da Silva SCM, Barbosa DB. Pomegranate Extract Potentiates the Anti-Demineralizing, Anti-Biofilm, and Anti-Inflammatory Actions of Non-Alcoholic Mouthwash When Associated with Sodium-Fluoride Trimetaphosphate. Antibiotics (Basel) 2022; 11:1477. [PMID: 36358132 PMCID: PMC9686636 DOI: 10.3390/antibiotics11111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2023] Open
Abstract
This study investigated the anti-caries and anti-inflammatory effects of mouthwash formulations containing Punica granatum (pomegranate) peel extract (PPE), sodium-trimetaphosphate, and low concentrations of fluoride. PPE was characterized using high-performance liquid chromatography (ellagic acid and punicalagin). Total phenolics were quantified among formulations, and their stability was analyzed for 28 days. The formulation effects were evaluated as follows: (1) inorganic component concentration and reduced demineralization on bovine enamel blocks subjected to pH cycling; (2) anti-biofilm effect on dual-biofilms of Streptococcus mutans ATCC 25175 and Candida albicans ATCC 10231 treated for 1 and 10 min, respectively; and (3) cytotoxicity and production of inflammatory mediators (interleukin-6 and tumor necrosis factor-alpha). The formulation containing 3% PPE, 0.3% sodium-trimetaphosphate, and 225 ppm of fluoride resulted in a 34.5% surface hardness loss; a 13% (treated for 1 min) and 36% (treated for 10 min) biofilm reduction in S. mutans; a 26% (1 min) and 36% (10 min) biofilm reduction in C. albicans; absence of cytotoxicity; and anti-inflammatory activity confirmed by decreased interleukin-6 production in mouse macrophages. Thus, our results provide a promising prospect for the development of an alcohol-free commercial dental product with the health benefits of P. granatum that have been recognized for a millennium.
Collapse
Affiliation(s)
- Gabriela Lopes Fernandes
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Ana Paula Miranda Vieira
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Marcelle Danelon
- School of Dentistry, University of Ribeirão Preto—UNAERP, Ribeirão Preto 14096-039, São Paulo, Brazil
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Nayara Gonçalves Emerenciano
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | | | - Juliana Issa Hori
- Apis Flora Industrial and Comercial Ltd. Ribeirão Preto 14020-670, São Paulo, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Alberto Carlos Botazzo Delbem
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| |
Collapse
|
6
|
Effects of Sodium Hexametaphosphate and Fluoride on the pH and Inorganic Components of Streptococcus mutans and Candida albicans Biofilm after Sucrose Exposure. Antibiotics (Basel) 2022; 11:antibiotics11081044. [PMID: 36009913 PMCID: PMC9405115 DOI: 10.3390/antibiotics11081044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
In order to improve the anticaries effects of fluoridated products, the supplementation of these products has been considered a promising alternative for caries control. This study evaluated the effects of sodium hexametaphosphate (HMP) and/or fluoride (F) on the inorganic components and pH of Streptococcus mutans and Candida albicans dual-species biofilms. The biofilms were treated 72, 78, and 96 h after the beginning of their formation with 0.25, 0.5, or 1% HMP-containing solutions with or without F (500 ppm, as sodium fluoride). F-containing solutions (500 ppm and 1100 ppm) and artificial saliva were used as controls. The biofilms were exposed to a 20% sucrose solution after the third treatment. Along with the biofilm pH, the concentrations of F, calcium, phosphorus (P), and HMP were determined. HMP, combined with F, increased F levels and decreased P levels in the biofilm fluid compared to that of the solution with 500 ppm F. Exposure to sucrose decreased the concentrations of all ions in the biomass, except for HMP; 1% HMP, combined with F, promoted the highest pH. It can be concluded that HMP affected the inorganic composition of the biofilm and exerted a buffering effect on the biofilm pH.
Collapse
|
7
|
Calcium glycerophosphate and fluoride affect the pH and inorganic composition of dual-species biofilms of Streptococcus mutans and Candida albicans. J Dent 2021; 115:103844. [PMID: 34637893 DOI: 10.1016/j.jdent.2021.103844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study evaluated the influence of calcium glycerophosphate (CaGP), combined with or without fluoride (F), on the pH and concentrations of F, Ca, and P of dual-species biofilms of Streptococcus mutans and Candida albicans, with or without exposure to sucrose. METHODS The biofilms (n = 9) received three treatments (72, 78, and 96 h after the start of their formation) at three CaGP concentrations (0.125, 0.25, or 0.5%), with or without F at 500 ppm (as NaF). Solutions containing 500 and 1100 ppm F and artificial saliva were also tested as controls. Biofilm pH was measured, and the concentrations of F, Ca, P, and CaGP were determined (solid and fluid phases). In a parallel experiment, after the third treatment, the treated biofilms were exposed to a sucrose solution, and the pH of the medium, F, Ca, P, and CaGP was determined. Data were subjected to two-way ANOVA, followed by Fisher's LSD test (p < 0.05). RESULTS Treatment with CaGP and 500 ppm F led to the highest pH values and F and Ca concentrations in the biofilm biomass, both with and without sucrose exposure. CaGP without F led to higher Ca and P concentrations in the biofilm fluid. CONCLUSIONS CaGP increased F, Ca, and P concentrations in the biofilm, and its presence promoted an increase in the pH of the medium, even after exposure to sucrose. CLINICAL SIGNIFICANCE The present results elucidate the mechanism by which CaGP and F act on biofilms, further interfering with dental caries dynamics.
Collapse
|
8
|
Effects of brief sodium fluoride treatments on the growth of early and mature cariogenic biofilms. Sci Rep 2021; 11:18290. [PMID: 34521969 PMCID: PMC8440647 DOI: 10.1038/s41598-021-97905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Although fluoride has been widely used as a preventive agent for dental caries, the effects of fluoride on the activities of biofilms in different stages of cariogenic biofilm formation are less studied. This study was designed to investigate the antibiofilm activity of sodium fluoride during the early and mature stages of Streptococcus mutans (S. mutans) biofilm formation. S. mutans biofilms were formed on saliva-coated hydroxyapatite disks. In the early (0-46 h) and mature (46-94 h) biofilm stages, the biofilms were treated with different concentrations of fluoride (250, 500, 1000, 2000 ppm; 5 times in total, 1 min/treatment). Acidogenicity, dry weight, colony-forming units (CFUs), water-soluble/insoluble extracellular polysaccharides (EPSs), and intracellular polysaccharides were analysed, and confocal laser scanning microscopy images were obtained of the two stages of biofilms to determine antibiofilm activities of fluoride at varying concentrations during the formation of early and mature biofilms. In the early stages of cariogenic biofilm formation, test groups with all fluoride concentrations significantly inhibited the growth of S. mutans biofilms. The antibiofilm and anti-EPS formation activities of the brief fluoride treatments increased with a concentration-dependent pattern. At the mature biofilm stage, only the 2000 ppm fluoride treatment group significantly inhibited biofilm accumulation, activity, and intracellular/extracellular polysaccharide content compared with those of the control and other fluoride treatment groups. The antimicrobial effect of fluoride treatment on the growth of S. mutans biofilms was linked with the stage of cariogenic biofilm formation. The inhibition of S. mutans biofilm growth by fluoride treatment was easier in the early formation stage than in the mature stage. Fluoride treatment in the early stage of cariogenic biofilm formation may be an effective approach to controlling cariogenic biofilm development and preventing dental caries.
Collapse
|
9
|
The influence of biofilm maturation on fluoride's anticaries efficacy. Clin Oral Investig 2021; 26:1269-1282. [PMID: 34328559 DOI: 10.1007/s00784-021-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES (1) To explore the influence of biofilm maturation and timing of exposure on fluoride anticaries efficacy and (2) to explore biofilm recovery post-treatment. METHODS Bovine enamel specimens were utilized in a pH cycling model (28 subgroups [n = 18]). Each subgroup received different treatments [exposure]: sodium fluoride [NaF]; stannous fluoride [SnF2]; amine fluoride [AmF]; and de-ionized water [DIW], at a specific period: early: days 1-4; middle: days 3-6; and late: days 7-10. During non-exposure periods, pH cycling included DIW instead of fluorides. Objective 1: part 1 (cycling for 4, 6, or 10 days). Part 2 (cycling for 10 days). Objective 2: early exposure: three sample collection time points (immediate, 3 days, and 6 days post-treatment); middle exposure: two sample collection time points (immediate, 4 days post-treatment). The enamel and biofilm were analyzed ([surface microhardness; mineral loss; lesion depth]; [lactate dehydrogenase enzyme activity; exopolysaccharide amount; viability]). Data were analyzed using ANOVA (p = 0.05). RESULTS Objective 1: Early exposure to fluorides produced protective effects against lesion progression in surface microhardness and mineral loss, but not for lesion depth. Objective 2: Early exposure slowed the demineralization process. SnF2 and AmF were superior to NaF in reducing LDH and EPS values, regardless of exposure time. They also prevented biofilm recovery. CONCLUSION Earlier exposure to SnF2 and AmF may result in less tolerant biofilm. Early fluoride treatment may produce a protective effect against demineralization. SnF2 and AmF may be the choice to treat older biofilm and prevent biofilm recovery. CLINICAL RELEVANCE The study provides an understanding of biofilm-fluoride interaction with mature biofilm (e.g., hard-to-reach areas, orthodontic patients) and fluoride's sustainable effect hours/days after brushing.
Collapse
|
10
|
Cavazana TP, Pessan JP, Hosida TY, Sampaio C, Amarante VDOZ, Monteiro DR, Delbem ACB. Effects of Sodium Trimetaphosphate, Associated or Not with Fluoride, on the Composition and pH of Mixed Biofilms, before and after Exposure to Sucrose. Caries Res 2020; 54:358-368. [PMID: 32998137 DOI: 10.1159/000501262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/31/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to evaluate the influence of sodium trimetaphosphate (TMP), associated or not with fluoride (F), on the concentrations of F, calcium (Ca), and phosphorus (P) and on the pH of mixed biofilms of Streptococcus mutans and Candida albicans, before and after exposure to sucrose. The biofilms received three treatments (72, 78, and 96 h after the beginning of their formation), at three TMP concentrations (0.25, 0.5, or 1%), with or without F at 500 ppm. Solutions containing 500 and 1,100 ppm F as well as artificial saliva were also tested as controls. Biofilm pH was measured and the concentrations of F, Ca, and P were determined (solid and fluid phases). In a parallel experiment, after the third treatment (96 h), the biofilms were exposed to a 20% sucrose solution to simulate a cariogenic challenge and the pH of the medium, F, Ca, P, and TMP were determined. The data were submitted by two-way ANOVA, followed by Fisher's least significant difference test (p < 0.05). Treatment with TMP and 500 ppm F led to higher F concentration in the biofilm fluid. Although TMP did not affect Ca concentrations, biofilms treated with TMP alone presented higher P concentrations. Treatment with 1% TMP and F led to the highest pH values of the biofilm, both before and after the cariogenic challenge. It was concluded that TMP increases F and P in the biofilm and that its presence promotes an increase in the pH of the medium, even after the cariogenic challenge.
Collapse
Affiliation(s)
- Thamires Priscila Cavazana
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thayse Yumi Hosida
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Caio Sampaio
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD - Master's Degree), University of Western São Paulo (UNOESTE), Presidente Prudente, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil,
| |
Collapse
|
11
|
Li B, Pan T, Lin H, Zhou Y. The enhancing antibiofilm activity of curcumin on Streptococcus mutans strains from severe early childhood caries. BMC Microbiol 2020; 20:286. [PMID: 32938379 PMCID: PMC7493841 DOI: 10.1186/s12866-020-01975-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Streptococcus mutans (S. mutans) is one of the main cariogenic bacteria for caries. It was found that the clinical strains of S. mutans isolated from caries active population have stronger cariogenic ability than the isolates from caries-free (CF) people. Previous studies have found that curcumin can inhibit biofilm formation of S. mutans UA159. The objective of this study is to explore the antibiofilm effect of curcumin on the clinical isolates of S. mutans from severe early childhood caries(SECC). RESULTS The isolates from SECC group had more biomass than CF group (t = 4.296, P < 0.001). The acidogenicity and aciduricity of the strains from two groups showed no significant difference. After treatment with curcumin, the viability of biofilm was reduced to 61.865% ± 7.108% in SECC and to 84.059% ± 10.227% in CF group at 24 h (P < 0.05). The net reduction of live bacteria and total bacteria in the SECC group was significantly higher than that of the CF group (live bacteria t = 3.305, P = 0.016; total bacteria t = 2.378, P = 0.045) at 5 min. For 24 h, the net reduction of live bacteria and total bacteria in the SECC group was significantly higher than that of the CF group (live bacteria t = 3.305, P = 0.016; total bacteria t = 2.378, P = 0.045). The reduction of biofilm thickness reduced significantly in 5 min (t = 4.110, P = 0.015) and in 24 h (t = 3.453, P = 0.014). Long-term (24 h) curcumin treatment inhibited the amount of EPS in SECC group from (25.980 ± 1.156) μm3/μm2 to (20.136 ± 1.042) μm3/μm2, the difference was statistically significant (t = 7.510, P < 0.001). The gene of gtfC, gtfD, ftf, gbpB, fruA and srtA in the CF group and the gtfB, gtfC, gtfD, ftf, gbpB, srtA in SECC group were respectively reduced after 5 min curcumin treatment. After 24 h treatment, the gtfB, gtfC, gtfD, ftf, gbpB, fruA and srtA in both two groups were downregulation, all the differences were statistically significant. CONCLUSIONS Curcumin has antibiofilm activity on clinical strains of S. mutans, especially for those isolated from SECC.
Collapse
Affiliation(s)
- Bingchun Li
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ting Pan
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Yan Zhou
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Road West, Guangzhou, 510055, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J Dent 2020; 96:103328. [DOI: 10.1016/j.jdent.2020.103328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
|
13
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization. J Appl Oral Sci 2020; 28:e20190501. [PMID: 32236356 PMCID: PMC7105287 DOI: 10.1590/1678-7757-2019-0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The acquired pellicle formation is the first step in dental biofilm formation. It distinguishes dental biofilms from other biofilm types. OBJECTIVE To explore the influence of salivary pellicle formation before biofilm formation on enamel demineralization. METHODOLOGY Saliva collection was approved by Indiana University IRB. Three donors provided wax-stimulated saliva as the microcosm bacterial inoculum source. Acquired pellicle was formed on bovine enamel samples. Two groups (0.5% and 1% sucrose-supplemented growth media) with three subgroups (surface conditioning using filtered/pasteurized saliva; filtered saliva; and deionized water (DIW)) were included (n=9/subgroup). Biofilm was then allowed to grow for 48 h using Brain Heart Infusion media supplemented with 5 g/l yeast extract, 1 mM CaCl2.2H2O, 5% vitamin K and hemin (v/v), and sucrose. Enamel samples were analyzed for Vickers surface microhardness change (VHNchange), and transverse microradiography measuring lesion depth (L) and mineral loss (∆Z). Data were analyzed using two-way ANOVA. RESULTS The two-way interaction of sucrose concentration × surface conditioning was not significant for VHNchange (p=0.872), ∆Z (p=0.662) or L (p=0.436). Surface conditioning affected VHNchange (p=0.0079), while sucrose concentration impacted ∆Z (p<0.0001) and L (p<0.0001). Surface conditioning with filtered/pasteurized saliva resulted in the lowest VHNchange values for both sucrose concentrations. The differences between filtered/pasteurized subgroups and the two other surface conditionings were significant (filtered saliva p=0.006; DIW p=0.0075). Growing the biofilm in 1% sucrose resulted in lesions with higher ∆Z and L values when compared with 0.5% sucrose. The differences in ∆Z and L between sucrose concentration subgroups was significant, regardless of surface conditioning (both p<0.0001). CONCLUSION Within the study limitations, surface conditioning using human saliva does not influence biofilm-mediated enamel caries lesion formation as measured by transverse microradiography, while differences were observed using surface microhardness, indicating a complex interaction between pellicle proteins and biofilm-mediated demineralization of the enamel surface.
Collapse
Affiliation(s)
- Hadeel M Ayoub
- King Saud University, Dental Health Department, College of Applied Medical Sciences, Riyadh, Saudi Arabia.,Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, Indiana, USA
| | - Richard L Gregory
- Indiana University, School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, Indiana, USA
| | - Qing Tang
- Indiana University, School of Medicine, Department of Biostatistics, Indianapolis, Indiana, USA
| | - Frank Lippert
- Indiana University, School of Dentistry, Department of Cariology, Operative Dentistry and Dental Public Health, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Ionescu A, Brambilla E, Hahnel S. Does recharging dental restorative materials with fluoride influence biofilm formation? Dent Mater 2019; 35:1450-1463. [PMID: 31400984 DOI: 10.1016/j.dental.2019.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To investigate the influence of recharging dental restorative materials with fluoride on biofilm formation. METHODS Specimens produced from a high-viscosity glass ionomer cement (HVGIC), a resin-modified glass ionomer cement (RMGIC), and a resin-based composite (RBC) were randomly allotted to incubation in artificial saliva either for one week (AS-1), for five weeks (AS-5), for five weeks including twice/day brushing with 1450ppm NaF toothpaste (AS-5-brush), or one-time exposition to 5000ppm NaF after five weeks of incubation (AS-5-exp). Human enamel was used as reference. Surface roughness and the release of fluoride from the specimens was determined; biofilm formation was simulated using mono- or multispecies microbiological models and analysed employing an MTT-based approach and confocal laser-scanning microscopy. RESULTS Monospecies biofilm formation was significantly reduced on HVGIC in comparison to RMGIC and RBC. It was also reduced on HVGIC and enamel after treatment with fluoride in groups AS-5-brush and AS-5-exp in comparison to AS-5. These effects were particularly pronounced after 24h, and less pronounced after 48h of biofilm formation. In the multispecies microbiological model, similar observations were identified for HVGIC, while for enamel a significant reduction in biofilm formation was observed in groups AS-5-brush and AS-5-exp. No significant effect of fluoride treatments was identified for RMGIC and RBC, regardless of the microbiological model applied. SIGNIFICANCE These data indicate that biofilm formation on the surfaces of a glass ionomer cement and enamel can be relevantly influenced by treatment with fluoride. Enamel may serve as a fluoride reservoir which requires regular recharge.
Collapse
Affiliation(s)
- Andrei Ionescu
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Eugenio Brambilla
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Sebastian Hahnel
- Poliklinik für Zahnärztliche Prothetik und Werkstoffkunde, Leipzig University, Leipzig, Germany.
| |
Collapse
|