1
|
Cheung CKH, Not C. Early signs of plastic degradation and fragmentation: A 40-day study in marine environments. MARINE POLLUTION BULLETIN 2024; 207:116809. [PMID: 39126776 DOI: 10.1016/j.marpolbul.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Conventional plastics are widely present in the ocean as marine plastic debris. This in-situ study investigates the degradability and fragmentation of seven common conventional plastics (PET, PVC, PS, EPS, PP, HDPE, and LDPE) in natural marine environments over a 40-day period. All plastics showed significant chemical changes and oscillating plastic oxidation levels, indicating the synergistic processes of oxidation and removal of oxidation products. Polystyrenes and polymers with heteroatoms showed the largest degradation potentials, while pure polyolefins exhibited the highest fragmentation risks. SEM images suggest potentials of EPS and pure polyolefins in generating microplastic fragments, and polymers with heteroatoms in generating nanoplastic fragments. PS did not exhibit any surface degradation signs, potentially due to enhanced crystallinity through oxidation. The findings highlight the need for reduced usage of EPS and pure polyolefins which are commonly applied as disposable utensils and food packaging, and prioritized cleanup of these polymers to reduce microplastic pollution in the environment.
Collapse
Affiliation(s)
- Coco Ka Hei Cheung
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Christelle Not
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong; The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
2
|
Ren K, Ming H, Liu S, Lang X, Jin Y, Fan J. Full-length 16S rRNA gene sequencing reveals the operating mode and chlorination-aggravated SWRO biofouling at a nuclear power plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1-17. [PMID: 39007303 DOI: 10.2166/wst.2024.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.
Collapse
Affiliation(s)
- Kaijia Ren
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Hongxia Ming
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Siyu Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xianlong Lang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116021, China
| | - Yuan Jin
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China
| | - Jingfeng Fan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China E-mail:
| |
Collapse
|
3
|
Lee S, Kim J, Jung JH, Kim M, Park H, Rhee JS. Exposure to hull cleaning wastewater induces mortality through oxidative stress and cholinergic disturbance in the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109922. [PMID: 38615807 DOI: 10.1016/j.cbpc.2024.109922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/17/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
While wastewater and paint particles discharged from the in-water cleaning process of ship hulls are consistently released into benthic ecosystems, their hazardous effects on non-target animals remain largely unclear. In this study, we provide evidence on acute harmful effects of hull cleaning wastewater in marine polychaete Perinereis aibuhitensis by analyzing physiological and biochemical parameters such as survival, burrowing activity, and oxidative status. Raw wastewater samples were collected during ship hull cleaning processes in the field. Two wastewater samples for the exposure experiment were prepared in the laboratory: 1) mechanically filtered in the in-water cleaning system (MF) and 2) additionally filtered with a 0.45 μm filter in the laboratory (LF). These wastewater samples contained high concentrations of metals (zinc and copper) and metal-based booster biocides (copper pyrithione and zinc pyrithione) compared to those analyzed in seawater. Polycheates were exposed to different concentrations of the two wastewater samples for 96 h. Higher mortality was observed in response to MF compared to LF-exposed polychaetes. Both wastewater samples dose-dependently decreased burrowing activity and AChE activity. Drastic oxidative stress was observed in response to the two wastewater samples. MDA levels were significantly increased by MF and LF samples. Significant GSH depletion was observed with MF exposure, while increased and decreased GSH contents were observed in LF-exposed polychaetes. Enzymatic activities of antioxidant components, catalase, superoxide dismutase, and glutathione S-transferase were significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater can have deleterious effects on the health status of polychaetes.
Collapse
Affiliation(s)
- Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
4
|
Naik AT, Kamensky KM, Hellum AM, Moisander PH. Disturbance frequency directs microbial community succession in marine biofilms exposed to shear. mSphere 2023; 8:e0024823. [PMID: 37931135 PMCID: PMC10790581 DOI: 10.1128/msphere.00248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Disturbances are major drivers of community succession in many microbial systems; however, relatively little is known about marine biofilm community succession, especially under antifouling disturbance. Antifouling technologies exert strong local disturbances on marine biofilms, and resulting biomass losses can be accompanied by shifts in biofilm community composition and succession. We address this gap in knowledge by bridging microbial ecology with antifouling technology development. We show that disturbance by shear can strongly alter marine biofilm community succession, acting as a selective filter influenced by frequency of exposure. Examining marine biofilm succession patterns with and without shear revealed stable associations between key prokaryotic and eukaryotic taxa, highlighting the importance of cross-domain assessment in future marine biofilm research. Describing how compounded top-down and bottom-up disturbances shape the succession of marine biofilms is valuable for understanding the assembly and stability of these complex microbial communities and predicting species invasiveness.
Collapse
Affiliation(s)
- Abhishek T. Naik
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| | | | - Aren M. Hellum
- Naval Undersea Warfare Center, Newport, Rhode Island, USA
| | - Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts, USA
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts, USA
| |
Collapse
|
5
|
Turnlund AC, Vanwonterghem I, Botté ES, Randall CJ, Giuliano C, Kam L, Bell S, O'Brien P, Negri AP, Webster NS, Lurgi M. Linking differences in microbial network structure with changes in coral larval settlement. ISME COMMUNICATIONS 2023; 3:114. [PMID: 37865659 PMCID: PMC10590418 DOI: 10.1038/s43705-023-00320-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.
Collapse
Affiliation(s)
- Abigail C Turnlund
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Inka Vanwonterghem
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Emmanuelle S Botté
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Lisa Kam
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Sara Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul O'Brien
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Kingston, ACT, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
6
|
Kumar M, Chaudhary DR, Jha B. Surface-associated bacterial assemblages on marine anthropogenic litter in the intertidal zone of the Arabian Sea, India. MARINE POLLUTION BULLETIN 2023; 193:115211. [PMID: 37392592 DOI: 10.1016/j.marpolbul.2023.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Anthropogenic marine litter (mainly plastic pollution) is a serious concern globally. The interactions between terrestrial and marine ecosystems lead to the accumulation of marine litter in the intertidal zone. The biofilm-forming bacteria tend to colonize on surfaces of marine litter which are composed of diverse bacteria and are less studied. The present study investigated the bacterial community composition using both culturable and non-culturable (Next-generation sequencing (NGS)) approaches associated with the marine litter (polyethylene (PE), styrofoam (SF) and fabric (FB)) at three distinct locations (Alang, Diu and Sikka) of the Arabian Sea, Gujarat, India. Predominant bacteria observed using culturable and NGS techniques belonged to Proteobacteria phyla. Alphaproteobacteria class dominated on polyethylene and styrofoam surfaces in the culturable fraction among the sites while the Bacillus dominated fabric surfaces. In the metagenomics fraction, Gammaproteobacteria dominated the surfaces except for PE and SF surfaces from Sikka and Diu, respectively. The PE surface at Sikka was dominated by Fusobacteriia while SF surface from Diu was dominated by Alphaproteobacteria. Both culture-dependent and NGS approaches identified hydrocarbon-degrading bacteria as well as pathogenic bacteria on the surfaces. The outcome of the present study illustrates diverse bacterial assemblages which occur on marine litter and increases our understanding of the plastisphere community.
Collapse
Affiliation(s)
- Madhav Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India.
| |
Collapse
|
7
|
Mohamed HF, Abd-Elgawad A, Cai R, Luo Z, Pie L, Xu C. Microbial community shift on artificial biological reef structures (ABRs) deployed in the South China Sea. Sci Rep 2023; 13:3456. [PMID: 36859411 PMCID: PMC9977770 DOI: 10.1038/s41598-023-29359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
Many Artificial Reefs (ARs) have been used worldwide for marine habitat and coral reef restoration. However, the microbial community structure that colonize the ARs and their progressive development have been seldom investigated. In this study, the successive development of the microbial communities on environmentally friendly Artificial Biological Reef structures (ABRs)R made of special concrete supported with bioactive materials collected from marine algal sources were studied. Three seasons (spring, summer and autumn), three coral reef localities and control models (SCE) without bioactive material and (NCE) made of normal cement were compared. The structure of the microbial pattern exhibited successive shifts from the natural environment to the ABRs supported with bioactive materials (ABAM). Cyanobacteria, Proteobacteria, and Planctomycetota were shown to be the most three dominant phyla. Their relative abundances pointedly increased on ABAM and SCE models compared to the environment. Amplicon Sequence Variant (ASV) Richness and Shannon index were obviously higher on ABAM models and showed significant positive relationship with that of macrobenthos than those on the controls and the natural reef (XR). Our results offer successful establishment of healthy microbial films on the ABR surfaces enhanced the restoration of macrobenthic community in the damaged coral reefs which better understands the ecological role of the ABRs.
Collapse
Affiliation(s)
- Hala F. Mohamed
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 People’s Republic of China ,grid.411303.40000 0001 2155 6022Botany & Microbiology Department, (Girls Branch), Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amro Abd-Elgawad
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China. .,Tourism Developing Authority, Central Administration for Environmental Affairs, Cairo, Egypt.
| | - Rongshuo Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China.
| | - Zhaohe Luo
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 People’s Republic of China
| | - Lulu Pie
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 People’s Republic of China
| | - Changan Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
8
|
Kumar M, Kumar R, Chaudhary DR, Jha B. An appraisal of early stage biofilm-forming bacterial community assemblage and diversity in the Arabian Sea, India. MARINE POLLUTION BULLETIN 2022; 180:113732. [PMID: 35594757 DOI: 10.1016/j.marpolbul.2022.113732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The community composition and distribution of early-stage (24 h) biofilm-forming bacteria on two different surfaces (glass slide and polystyrene plastic slide) at three different locations (Diu, Alang and Sikka) were studied using a culture-dependent and next-generation sequencing (NGS) approach in the Arabian Sea, Gujarat, India. The most dominant phyla observed using the NGS approach were the Proteobacteria among the sampling sites. Gammaproteobacteria class dominated both the surfaces among the sites and accounted for 46.7% to 89.2% of total abundance. The culture-dependent analysis showed Proteobacteria and Firmicutes as the dominant phyla on the surfaces within the sampling sites. During the initial colonization, hydrocarbon-degrading bacterial strains have also attached to the surfaces. The outcome of this study would be of great importance for targeting the early stage biofilm-forming and hydrocarbon-degrading bacterial isolates may help to degrade plastic in the marine environment.
Collapse
Affiliation(s)
- Madhav Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Raghawendra Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India.
| |
Collapse
|
9
|
Latva M, Dedman CJ, Wright RJ, Polin M, Christie-Oleza JA. Microbial pioneers of plastic colonisation in coastal seawaters. MARINE POLLUTION BULLETIN 2022; 179:113701. [PMID: 35537304 DOI: 10.1016/j.marpolbul.2022.113701] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Plastics, when entering the environment, are immediately colonised by microorganisms. This modifies their physico-chemical properties as well as their transport and fate in natural ecosystems, but whom pioneers this colonisation in marine ecosystems? Previous studies have focused on microbial communities that develop on plastics after relatively long incubation periods (i.e., days to months), but very little data is available regarding the earliest stages of colonisation on buoyant plastics in marine waters (i.e., minutes or hours). We conducted a preliminary study where the earliest hours of microbial colonisation on buoyant plastics in marine coastal waters were investigated by field incubations and amplicon sequencing of the prokaryotic and eukaryotic communities. Our results show that members of the Bacteroidetes group pioneer microbial attachment to plastics but, over time, their presence is masked by other groups - Gammaproteobacteria at first and later by Alphaproteobacteria. Interestingly, the eukaryotic community on plastics exposed to sunlight became dominated by phototrophic organisms from the phylum Ochrophyta, diatoms at the start and brown algae towards the end of the three-day incubations. This study defines the pioneering microbial community that colonises plastics immediately when entering coastal marine environments and that may set the seeding Plastisphere of plastics in the oceans.
Collapse
Affiliation(s)
- Mira Latva
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Craig J Dedman
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Robyn J Wright
- School of Life Sciences, University of Warwick, Coventry, UK; School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada; Department of Pharmacology, Faculty of Medicine, Dalhousie University, Canada
| | - Marco Polin
- Department of Physics, University of Warwick, Coventry, UK; IMEDEA (CSIC-UIB), Esporles, Spain
| | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, UK; University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
10
|
Li QC, Wang B, Zeng YH, Cai ZH, Zhou J. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment. Int J Mol Sci 2022; 23:ijms23073837. [PMID: 35409199 PMCID: PMC8998240 DOI: 10.3390/ijms23073837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.
Collapse
Affiliation(s)
- Qing-Chao Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
- Correspondence:
| |
Collapse
|
11
|
Impacts of UV-C irradiation on marine biofilm community succession. Appl Environ Microbiol 2021; 88:e0229821. [PMID: 34936837 DOI: 10.1128/aem.02298-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities ('biofouling'). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called 'biofouling'. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.
Collapse
|
12
|
Kiama CW, Njire MM, Kambura AK, Mugweru JN, Matiru VN, Wafula EN, Kagali RN, Kuja JO. Prokaryotic diversity and composition within equatorial lakes Olbolosat and Oloiden in Kenya (Africa). CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100066. [PMID: 34841356 PMCID: PMC8610316 DOI: 10.1016/j.crmicr.2021.100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Total community 16S rDNA was used to determine the diversity and composition of bacteria and archaea within lakes Olbolosat and Oloiden in Kenya. The V3-V4 hypervariable region of the 16S rRNA gene was targeted since it's highly conserved and has a higher resolution for lower rank taxa. High throughput sequencing was performed on 15 samples obtained from the two lakes using the Illumina Miseq platform. Lakes Olbolosat and Oloiden shared 280 of 10,523 Amplicon Sequence Variants (ASVs) recovered while the four sample types (water, microbial mats, dry and wet sediments) shared 4 ASVs. The composition of ASVs in lake Olbolosat was highly dependent on Cu+, Fe2+, NH4 +, and Mn2+, while L. Oloiden was dependent on Mg2+, Na+, Ca2+, and K+. All the alpha diversity indices except Simpson were highest in the dry sediment sample (EC1 and 2) both from lake Oloiden. The abundant phyla included Proteobacteria (33.8%), Firmicutes (27.3%), Actinobacteriota (21.2%), Chloroflexi (6.8%), Cyanobacteria (3.8%), Acidobacteriota (2.8%), Planctomycetota (1.9%) and Bacteroidota (1.1%). Analysis of similarity (ANOSIM) revealed a significant difference in ASV composition between the two lakes (r = 0.191, p = 0.048), and between the sample types (r = 0.6667, p = 0.001). The interaction network for prokaryotic communities within the two lakes displayed Proteobacteria to be highly positively connected with other microbes. PERMANOVA results suggest that temperature controls the functioning of the two ecosystems.
Collapse
Affiliation(s)
- Catherine Wachera Kiama
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Moses Mucugi Njire
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Anne Kelly Kambura
- School of Agriculture, Earth and Environmental Sciences, Taita Taveta University, P. O. Box 635-80300 Voi, Kenya
| | | | - Viviene Njeri Matiru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Eliud Nalianya Wafula
- Department of Physical and Biological Sciences, Bomet University College, P.O Box 701-20400, Bomet Kenya
| | - Robert Nesta Kagali
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Josiah Ochieng Kuja
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| |
Collapse
|
13
|
Sushmitha TJ, Rajeev M, Sriyutha Murthy P, Ganesh S, Toleti SR, Karutha Pandian S. Bacterial community structure of early-stage biofilms is dictated by temporal succession rather than substrate types in the southern coastal seawater of India. PLoS One 2021; 16:e0257961. [PMID: 34570809 PMCID: PMC8476003 DOI: 10.1371/journal.pone.0257961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial communities colonized on submerged substrata are recognized as a key factor in the formation of complex biofouling phenomenon in the marine environment. Despite massive maritime activities and a large industrial sector in the nearshore of the Laccadive Sea, studies describing pioneer bacterial colonizers and community succession during the early-stage biofilm are scarce. We investigated the biofilm-forming bacterial community succession on three substrata viz. stainless steel, high-density polyethylene, and titanium over 15 days of immersion in the seawater intake area of a power plant, located in the southern coastal region of India. The bacterial community composition of biofilms and peripheral seawater were analyzed by Illumina MiSeq sequenced 16S rRNA gene amplicons. The obtained metataxonomic results indicated a profound influence of temporal succession over substrate type on the early-stage biofilm-forming microbiota. Bacterial communities showed vivid temporal dynamics that involved variations in abundant bacterial groups. The proportion of dominant phyla viz. Proteobacteria decreased over biofilm succession days, while Bacteroidetes increased, suggesting their role as initial and late colonizers, respectively. A rapid fluctuation in the proportion of two bacterial orders viz. Alteromonadales and Vibrionales were observed throughout the successional stages. LEfSe analysis identified specific bacterial groups at all stages of biofilm development, whereas no substrata type-specific groups were observed. Furthermore, the results of PCoA and UPGMA hierarchical clustering demonstrated that the biofilm-forming community varied considerably from the planktonic community. Phylum Proteobacteria preponderated the biofilm-forming community, while the Bacteroidetes, Cyanobacteria, and Actinobacteria dominated the planktonic community. Overall, our results refute the common assumption that substrate material has a decisive impact on biofilm formation; rather, it portrayed that the temporal succession overshadowed the influence of the substrate material. Our findings provide a scientific understanding of the factors shaping initial biofilm development in the marine environment and will help in designing efficient site-specific anti-biofouling strategies.
Collapse
Affiliation(s)
- T. J. Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Meora Rajeev
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - P. Sriyutha Murthy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - S. Ganesh
- Department of Chemistry, Scott Christian College, Nagercoil, Tamil Nadu, India
| | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | | |
Collapse
|
14
|
Rufino BN, Procópio L. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel. Curr Microbiol 2021; 78:3394-3402. [PMID: 34232364 DOI: 10.1007/s00284-021-02596-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the "In Flux" system when compared to the "No Flux" biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in "No Flux", whereas in "In Flux" there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.
Collapse
Affiliation(s)
- Bárbara Nascimento Rufino
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil
| | - Luciano Procópio
- Microbial Corrosion Laboratory, Estácio University (UNESA), Bispo Street, 83, Room AG405, Rio de Janeiro, Rio de Janeiro, 20261-063, Brazil. .,Industrial Microbiology and Bioremediation Department, Federal University of Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Ferguson RMW, O'Gorman EJ, McElroy DJ, McKew BA, Coleman RA, Emmerson MC, Dumbrell AJ. The ecological impacts of multiple environmental stressors on coastal biofilm bacteria. GLOBAL CHANGE BIOLOGY 2021; 27:3166-3178. [PMID: 33797829 DOI: 10.1111/gcb.15626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results. Bacterial communities in coastal ecosystems underpin marine food webs and provide many important ecosystem services (e.g. nutrient cycling and carbon fixation). Yet, how microbial communities will respond to a changing climate remains uncertain. Thus, we used marine mesocosms to examine the impacts of warming, nutrient enrichment, and altered top-predator population size structure (common shore crab) on coastal microbial biofilm communities in a crossed experimental design. Warming increased bacterial α-diversity (18% increase in species richness and 67% increase in evenness), but this was countered by a decrease in α-diversity with nutrient enrichment (14% and 21% decrease for species richness and evenness, respectively). Thus, we show some effects of these stressors could cancel each other out under climate change scenarios. Warming and top-predator population size structure both affected bacterial biofilm community composition, with warming increasing the abundance of bacteria capable of increased mineralization of dissolved and particulate organic matter, such as Flavobacteriia, Sphingobacteriia, and Cytophagia. However, the community shifts observed with warming depended on top-predator population size structure, with Sphingobacteriia increasing with smaller crabs and Cytophagia increasing with larger crabs. These changes could alter the balance between mineralization and carbon sequestration in coastal ecosystems, leading to a positive feedback loop between warming and CO2 production. Our results highlight the potential for warming to disrupt microbial communities and biogeochemical cycling in coastal ecosystems, and the importance of studying these effects in combination with other environmental stressors.
Collapse
Affiliation(s)
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| | - David J McElroy
- Coastal & Marine Ecosystems Group, School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
- Marine Stewardship Council, London, UK
| | - Boyd A McKew
- School of Life Sciences, University of Essex, Colchester, UK
| | - Ross A Coleman
- Coastal & Marine Ecosystems Group, School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Mark C Emmerson
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
16
|
Cheng J, Jacquin J, Conan P, Pujo-Pay M, Barbe V, George M, Fabre P, Bruzaud S, Ter Halle A, Meistertzheim AL, Ghiglione JF. Relative Influence of Plastic Debris Size and Shape, Chemical Composition and Phytoplankton-Bacteria Interactions in Driving Seawater Plastisphere Abundance, Diversity and Activity. Front Microbiol 2021; 11:610231. [PMID: 33519764 PMCID: PMC7838358 DOI: 10.3389/fmicb.2020.610231] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
The thin film of life that inhabits all plastics in the oceans, so-called "plastisphere," has multiple effects on the fate and impacts of plastic in the marine environment. Here, we aimed to evaluate the relative influence of the plastic size, shape, chemical composition, and environmental changes such as a phytoplankton bloom in shaping the plastisphere abundance, diversity and activity. Polyethylene (PE) and polylactide acid (PLA) together with glass controls in the forms of meso-debris (18 mm diameter) and large-microplastics (LMP; 3 mm diameter), as well as small-microplastics (SMP) of 100 μm diameter with spherical or irregular shapes were immerged in seawater during 2 months. Results of bacterial abundance (confocal microscopy) and diversity (16S rRNA Illumina sequencing) indicated that the three classical biofilm colonization phases (primo-colonization after 3 days; growing phase after 10 days; maturation phase after 30 days) were not influenced by the size and the shape of the materials, even when a diatom bloom (Pseudo-nitzschia sp.) occurred after the first month of incubation. However, plastic size and shape had an effect on bacterial activity (3H leucine incorporation). Bacterial communities associated with the material of 100 μm size fraction showed the highest activity compared to all other material sizes. A mature biofilm developed within 30 days on all material types, with higher bacterial abundance on the plastics compared to glass, and distinct bacterial assemblages were detected on each material type. The diatom bloom event had a great impact on the plastisphere of all materials, resulting in a drastic change in diversity and activity. Our results showed that the plastic size and shape had relatively low influence on the plastisphere abundance, diversity, and activity, as compared to the plastic composition or the presence of a phytoplankton bloom.
Collapse
Affiliation(s)
- Jingguang Cheng
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Justine Jacquin
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Pascal Conan
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Mireille Pujo-Pay
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Matthieu George
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-UM, Place Eugène Bataillon, Montpellier, France
| | - Pascale Fabre
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-UM, Place Eugène Bataillon, Montpellier, France
| | - Stéphane Bruzaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | | | | | - Jean-François Ghiglione
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
17
|
Guo Z, Wang L, Cong W, Jiang Z, Liang Z. Comparative Analysis of the Ecological Succession of Microbial Communities on Two Artificial Reef Materials. Microorganisms 2021; 9:microorganisms9010120. [PMID: 33419197 PMCID: PMC7825563 DOI: 10.3390/microorganisms9010120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/02/2022] Open
Abstract
Concrete and wood are commonly used to manufacture artificial reefs (ARs) worldwide for marine resource enhancement and habitat restoration. Although microbial biofilms play an important role in marine ecosystems, the microbial communities that colonize concrete and wooden ARs and their temporal succession have rarely been studied. In this study, the temporal succession of the microbial communities on concrete and wooden AR blocks and the driving factors were investigated. The composition of the microbial communities underwent successive shifts over time: among the six dominant phyla, the relative abundances of Proteobacteria, Cyanobacteria and Gracilibacteria significantly decreased in wood, as did that of Cyanobacteria in concrete. Operational taxonomic units (OTU) richness and Shannon index were significantly higher in concrete than in wood. Non-metric multidimensional scaling ordination placed the microbial communities in two distinct clusters corresponding to the two substrate materials. The macrobenthic compositions of concrete and wood were broadly similar and shifted over time, especially in the first five weeks. The Shannon index of the microbial communities in concrete and wood increased significantly with the organism coverage. The results provide fundamental data on microbial community succession during the initial deployment of ARs and contribute to understanding the ecological effects of ARs.
Collapse
Affiliation(s)
| | | | | | - Zhaoyang Jiang
- Correspondence: (Z.J.); (Z.L.); Tel.: +86-0631-568-8511 (Z.L.)
| | - Zhenlin Liang
- Correspondence: (Z.J.); (Z.L.); Tel.: +86-0631-568-8511 (Z.L.)
| |
Collapse
|