1
|
Ren Y, Liu R, Zheng Y, Wang H, Meng Q, Zhu T, Yin J, Cao X, Yu Z. Biosynthetic mechanism of the yellow pigments in the marine bacterium Pseudoalteromonas sp. strain T1lg65. Appl Environ Microbiol 2024; 90:e0177923. [PMID: 38193673 PMCID: PMC10880671 DOI: 10.1128/aem.01779-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.
Collapse
Affiliation(s)
- Yixuan Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruoyu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Turnlund AC, Vanwonterghem I, Botté ES, Randall CJ, Giuliano C, Kam L, Bell S, O'Brien P, Negri AP, Webster NS, Lurgi M. Linking differences in microbial network structure with changes in coral larval settlement. ISME COMMUNICATIONS 2023; 3:114. [PMID: 37865659 PMCID: PMC10590418 DOI: 10.1038/s43705-023-00320-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Coral cover and recruitment have decreased on reefs worldwide due to climate change-related disturbances. Achieving reliable coral larval settlement under aquaculture conditions is critical for reef restoration programmes; however, this can be challenging due to the lack of reliable and universal larval settlement cues. To investigate the role of microorganisms in coral larval settlement, we undertook a settlement choice experiment with larvae of the coral Acropora tenuis and microbial biofilms grown for different periods on the reef and in aquaria. Biofilm community composition across conditioning types and time was profiled using 16S and 18S rRNA gene sequencing. Co-occurrence networks revealed that strong larval settlement correlated with diverse biofilm communities, with specific nodes in the network facilitating connections between modules comprised of low- vs high-settlement communities. Taxa associated with high-settlement communities were identified as Myxoccales sp., Granulosicoccus sp., Alcanivoraceae sp., unassigned JTB23 sp. (Gammaproteobacteria), and Pseudovibrio denitrificans. Meanwhile, taxa closely related to Reichenbachiella agariperforans, Pleurocapsa sp., Alcanivorax sp., Sneathiella limmimaris, as well as several diatom and brown algae were associated with low settlement. Our results characterise high-settlement biofilm communities and identify transitionary taxa that may develop settlement-inducing biofilms to improve coral larval settlement in aquaculture.
Collapse
Affiliation(s)
- Abigail C Turnlund
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Inka Vanwonterghem
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Emmanuelle S Botté
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Lisa Kam
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Sara Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Paul O'Brien
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Kingston, ACT, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
3
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
4
|
Hu XM, Zhang J, Ding WY, Liang X, Wan R, Dobretsov S, Yang JL. Reduction of mussel metamorphosis by inactivation of the bacterial thioesterase gene via alteration of the fatty acid composition. BIOFOULING 2021; 37:911-921. [PMID: 34620016 DOI: 10.1080/08927014.2021.1981882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Junbo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
| | - Wen-Yang Ding
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Rong Wan
- College of Marine Sciences, Shanghai Ocean University, Shanghai, PR China
- National Engineering Research Center for Oceanic Fisheries, Shanghai, PR China
- Zhoushan Branch of National Engineering Research Center for Oceanic Fisheries, Zhoushan, PR China
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| |
Collapse
|
5
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
6
|
Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar Drugs 2021; 19:308. [PMID: 34073515 PMCID: PMC8228501 DOI: 10.3390/md19060308] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, "tambjamines", produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates' ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Bhushan Rao Tulasi
- Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India;
| | - Mohanraju Raju
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Narsinh Thakur
- Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India;
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
| |
Collapse
|
7
|
Monti D, Hubas C, Lourenço X, Begarin F, Haouisée A, Romana L, Lefrançois E, Jestin A, Budzinski H, Tapie N, Risser T, Mansot JL, Keith P, Gros O, Lopez PJ, Lauga B. Physical properties of epilithic river biofilm as a new lead to perform pollution bioassessments in overseas territories. Sci Rep 2020; 10:17309. [PMID: 33057038 PMCID: PMC7560750 DOI: 10.1038/s41598-020-73948-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/30/2020] [Indexed: 11/10/2022] Open
Abstract
Chlordecone (CLD) levels measured in the rivers of the French West Indies were among the highest values detected worldwide in freshwater ecosystems, and its contamination is recognised as a severe health, environmental, agricultural, economic, and social issue. In these tropical volcanic islands, rivers show strong originalities as simplified food webs, or numerous amphidromous migrating species, making the bioindication of contaminations a difficult issue. The objective of this study was to search for biological responses to CLD pollution in a spatially fixed and long-lasting component of the rivers in the West Indies: the epilithic biofilm. Physical properties were investigated through complementary analyses: friction, viscosity as well as surface adhesion were analyzed and coupled with measures of biofilm carbon content and exopolymeric substance (EPS) production. Our results have pointed out a mesoscale chemical and physical reactivity of the biofilm that can be correlated with CLD contamination. We were able to demonstrate that epilithic biofilm physical properties can effectively be used to infer freshwater environmental quality of French Antilles rivers. The friction coefficient is reactive to contamination and well correlated to carbon content and EPS production. Monitoring biofilm physical properties could offer many advantages to potential users in terms of effectiveness and ease of use, rather than more complex or time-consuming analyses.
Collapse
Affiliation(s)
- Dominique Monti
- UMR BOREA, UA-MNHN-SU-IRD-CNRS-UCN, Université des Antilles, BP 592, 97157, Pointe-à-Pitre, Guadeloupe, France.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Université Des Antilles, MNHN, CNRS, SU, EPHE, BP 592, 97157, Pointe-à-Pitre, Guadeloupe, France.
| | - Cedric Hubas
- Muséum National D'Histoire Naturelle, UMR BOREA, MNHN-SU-IRD-CNRS-UCN-UA, Place de la croix, Station Marine de Concarneau, Concarneau, France
| | - Xavier Lourenço
- UMR BOREA, UA-MNHN-SU-IRD-CNRS-UCN, Université des Antilles, BP 592, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Farid Begarin
- C3MAG, UFR Des Sciences Exactes Et Naturelles, Université Des Antilles, BP 592, 97159, Pointe-à-Pitre, Guadeloupe, France
| | - Alexandre Haouisée
- UMR BOREA, UA-MNHN-SU-IRD-CNRS-UCN, Université des Antilles, BP 592, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Laurence Romana
- GTSI, département de Physique, Université des Antilles, BP 592, 97159, Pointe-à-Pitre Cedex, Guadeloupe, France
| | | | - Alexandra Jestin
- UPR 103 HORTSYS - CIRAD - Fonctionnement agroécologique Et Performances Des systèmes de Cultures Horticoles, Campus Agro-Environnemental Caraïbe, 97285, Le Lamentin, Martinique, France
| | - Hélène Budzinski
- UMR CNRS 5805 EPOC - OASU, Équipe LPTC, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
| | - Nathalie Tapie
- UMR CNRS 5805 EPOC - OASU, Équipe LPTC, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
| | - Théo Risser
- E2S UPPA, CNRS, IPREM, Universite de Pau Et Des Pays de L'Adour, BP 1155, 64013, Pau Cedex, France
| | - Jean-Louis Mansot
- C3MAG, UFR Des Sciences Exactes Et Naturelles, Université Des Antilles, BP 592, 97159, Pointe-à-Pitre, Guadeloupe, France
- GTSI, département de Physique, Université des Antilles, BP 592, 97159, Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Philippe Keith
- Muséum National D'Histoire Naturelle, UMR BOREA, MNHN-SU-IRD-CNRS-UCN-UA, 57 rue Cuvier, CP26, 75231, Paris Cedex 05, France
| | - Olivier Gros
- C3MAG, UFR Des Sciences Exactes Et Naturelles, Université Des Antilles, BP 592, 97159, Pointe-à-Pitre, Guadeloupe, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Université Des Antilles, MNHN, CNRS, SU, EPHE, BP 592, 97157, Pointe-à-Pitre, Guadeloupe, France
| | - Pascal-Jean Lopez
- Muséum National D'Histoire Naturelle, UMR BOREA, MNHN-SU-IRD-CNRS-UCN-UA, 57 rue Cuvier, CP26, 75231, Paris Cedex 05, France
| | - Béatrice Lauga
- E2S UPPA, CNRS, IPREM, Universite de Pau Et Des Pays de L'Adour, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
8
|
Quigley CTC, Capistrant-Fossa KA, Morrison HG, Johnson LE, Morozov A, Hertzberg VS, Brawley SH. Bacterial Communities Show Algal Host ( Fucus spp.)/Zone Differentiation Across the Stress Gradient of the Intertidal Zone. Front Microbiol 2020; 11:563118. [PMID: 33072025 PMCID: PMC7541829 DOI: 10.3389/fmicb.2020.563118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
The intertidal zone often has varying levels of environmental stresses (desiccation, temperature, light) that result in highly stress-tolerant macrobiota occupying the upper zone while less tolerant species occupy the lower zone, but little comparative information is available for intertidal bacteria. Here we describe natural (unmanipulated) bacterial communities of three Fucus congeners (F. spiralis, high zone; F. vesiculosus, mid zone; F. distichus, low zone) as well as those of F. vesiculosus transplanted to the high zone (Dry and Watered treatments) and to the mid zone (Procedural Control) during summer in Maine (United States). We predicted that bacterial communities would be different among the differently zoned natural congeners, and that higher levels of desiccation stress in the high zone would cause bacterial communities of Dry transplants to become similar to F. spiralis, whereas relieving desiccation stress on Watered transplants would maintain the mid-zone F. vesiculosus bacterial community. Bacteria were identified as amplicon sequence variants (ASVs) after sequencing the V4 hypervariable region of the 16S rRNA gene. Microbiome composition and structure were significantly different between the differently zoned congeners at each tissue type (holdfasts, receptacles, vegetative tips). ASVs significantly associated with the mid-zone congener were frequently also present on the high-zone or low-zone congener, whereas overlap in ASVs between the high-zone and low-zone congeners was rare. Only 7 of 6,320 total ASVs were shared among tissues over all congeners and transplant treatments. Holdfast bacterial community composition of Dry transplants was not significantly different from that of F. spiralis, but Watered holdfast communities were significantly different from those of F. spiralis and not significantly different from those of procedural controls. Additional stressor(s) appeared important, because bacterial communities of Dry and Watered transplants were only marginally different from each other (p = 0.059). The relative abundance of Rhodobacteraceae associated with holdfasts generally correlated with environmental stress with highest abundance associated with F. spiralis and the two high-zone transplant treatments. These findings suggest that the abiotic stressors that shape distributional patterns of host species also affect their bacterial communities.
Collapse
Affiliation(s)
| | | | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Ladd E Johnson
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Aleksey Morozov
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Vicki S Hertzberg
- Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, ME, United States
| |
Collapse
|
9
|
Peng LH, Liang X, Xu JK, Dobretsov S, Yang JL. Monospecific Biofilms of Pseudoalteromonas Promote Larval Settlement and Metamorphosis of Mytilus coruscus. Sci Rep 2020; 10:2577. [PMID: 32054934 PMCID: PMC7018757 DOI: 10.1038/s41598-020-59506-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
As a stage of life cycle, larval settlement and metamorphosis are critical processes for persistence of many marine invertebrate populations. Bacterial biofilms (BFs) could induce larval settlement and metamorphosis. Pseudoalteromonas, a widely distributed genus of marine bacteria, showed inductive effects on several invertebrates. However, how Pseudoalteromonas BFs induce settlement and metamorphosis of Mytilus coruscus remains unclear. Pseudoalteromonas marina BFs with the highest inducing activity were further investigated to define inductive cues. Surface-bound products of P. marina BFs could induce larval settlement and metamorphosis. P. marina BFs treated with formalin, antibiotics, ultraviolet irradiation, heat and ethanol significantly reduced inductive effects and cell survival rates. The confocal laser scanning microscopy and the biovolume analysis showed the dominance of α-polysaccharides on P. marina BFs. Treatment of BFs with amylases, proteases and lipase led to the decrease of inducing activity, suggesting that inductive cues of P. marina BFs may comprise of molecular domains of polysaccharides, proteins, and lipids. Finding inductive cues of BFs could put forward further studies about the mechanism of larval settlement and metamorphosis of marine invertebrates.
Collapse
Affiliation(s)
- Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jia-Kang Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Dogs M, Wemheuer B, Wolter L, Bergen N, Daniel R, Simon M, Brinkhoff T. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Syst Appl Microbiol 2017; 40:370-382. [PMID: 28641923 DOI: 10.1016/j.syapm.2017.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle.
Collapse
Affiliation(s)
- Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Bernd Wemheuer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Nils Bergen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
11
|
Bondoso J, Godoy-Vitorino F, Balagué V, Gasol JM, Harder J, Lage OM. Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol Ecol 2017; 93:fiw255. [PMID: 28087803 DOI: 10.1093/femsec/fiw255] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2016] [Indexed: 01/18/2023] Open
Abstract
Planctomycetes, a unique group of widespread and understudied bacteria, are known to be associated with macroalgae. The temporal dynamics and the host-specific association of planctomycetal communities on Fucus spiralis, Ulva sp. and Chondrus crispus from two locations in the North Coast of Portugal were assessed both by denaturing gradient gel electrophoresis with group-specific primers and 16S rDNA amplicon libraries. The epiphytic planctomycetal communities showed a significant association with the host macroalgal species independently of the geographical location and the season. This pattern was confirmed by clone libraries of winter and summer samples: we obtained 720 16S rRNA gene sequences that represented 44 operational taxonomic units (OTUs) within the phylum Planctomycetes. Most of the OTUs belonged to Blastopirellula, followed by Rhodopirellula, Planctomyces, the Pir4 lineage and the uncultured class OM190 (this last one nearly 30% of the OTUs). Ulva sp. and C. crispus had more diverse planctomycetal communities than F. spiralis. Analysis of beta diversity showed that the planctomycetal microbiome was host specific. We hypothesize that the specific association of Planctomycetes and their macroalgal hosts is likely determined by nutritional molecules provided by the algae and the set of sulfatases inherent to each Planctomycetes species.
Collapse
Affiliation(s)
- Joana Bondoso
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n° 4169-007 Porto, Portugal.,CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental - Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Filipa Godoy-Vitorino
- Department of Natural Sciences, Microbial Ecology and Genomics Lab, College of Sciences and Technology, Inter American University of Puerto Rico-Metropolitan Campus, San Juan, PR 00919, USA
| | - Vanessa Balagué
- Institut de Ciències del Mar-CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Josep M Gasol
- Institut de Ciències del Mar-CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n° 4169-007 Porto, Portugal.,CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental - Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
12
|
Borchert E, Knobloch S, Dwyer E, Flynn S, Jackson SA, Jóhannsson R, Marteinsson VT, O'Gara F, Dobson ADW. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from 'Deep Sea' Sponges. Mar Drugs 2017. [PMID: 28629190 PMCID: PMC5484134 DOI: 10.3390/md15060184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.
Collapse
Affiliation(s)
- Erik Borchert
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Stephen Knobloch
- Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland.
| | - Emilie Dwyer
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Sinéad Flynn
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Stephen A Jackson
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| | - Ragnar Jóhannsson
- Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland.
| | | | - Fergal O'Gara
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
- Biomerit Research Centre, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland.
| |
Collapse
|
13
|
Bosi E, Fondi M, Orlandini V, Perrin E, Maida I, de Pascale D, Tutino ML, Parrilli E, Lo Giudice A, Filloux A, Fani R. The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics 2017; 18:93. [PMID: 28095778 PMCID: PMC5240218 DOI: 10.1186/s12864-016-3382-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pseudoalteromonas is a genus of ubiquitous marine bacteria used as model organisms to study the biological mechanisms involved in the adaptation to cold conditions. A remarkable feature shared by these bacteria is their ability to produce secondary metabolites with a strong antimicrobial and antitumor activity. Despite their biotechnological relevance, representatives of this genus are still lacking (with few exceptions) an extensive genomic characterization, including features involved in the evolution of secondary metabolites production. Indeed, biotechnological applications would greatly benefit from such analysis. RESULTS Here, we analyzed the genomes of 38 strains belonging to different Pseudoalteromonas species and isolated from diverse ecological niches, including extreme ones (i.e. Antarctica). These sequences were used to reconstruct the largest Pseudoalteromonas pangenome computed so far, including also the two main groups of Pseudoalteromonas strains (pigmented and not pigmented strains). The downstream analyses were conducted to describe the genomic diversity, both at genus and group levels. This allowed highlighting a remarkable genomic heterogeneity, even for closely related strains. We drafted all the main evolutionary steps that led to the current structure and gene content of Pseudoalteromonas representatives. These, most likely, included an extensive genome reduction and a strong contribution of Horizontal Gene Transfer (HGT), which affected biotechnologically relevant gene sets and occurred in a strain-specific fashion. Furthermore, this study also identified the genomic determinants related to some of the most interesting features of the Pseudoalteromonas representatives, such as the production of secondary metabolites, the adaptation to cold temperatures and the resistance to abiotic compounds. CONCLUSIONS This study poses the bases for a comprehensive understanding of the evolutionary trajectories followed in time by this peculiar bacterial genus and for a focused exploitation of their biotechnological potential.
Collapse
Affiliation(s)
- Emanuele Bosi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Marco Fondi
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Valerio Orlandini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Pieraccini, 6, I-50139, Florence, Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Isabel Maida
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino, 111, I-80131, Naples, Italy
| | - Maria Luisa Tutino
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy
| | - Ermenegilda Parrilli
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126, Naples, Italy
| | - Angelina Lo Giudice
- Institute for the Coastal Marine Environment, National Research Council, Spianata San Raineri 86, I-98122, Messina, Italy
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Alain Filloux
- Department of Life Sciences, Imperial College London, MRC Centre for Molecular Bacteriology and Infection, Flowers Building, 1st floor, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano 6, I-501019, Sesto F.no Florence, Italy.
| |
Collapse
|
14
|
Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs 2016; 14:E129. [PMID: 27399731 PMCID: PMC4962019 DOI: 10.3390/md14070129] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota.
Collapse
Affiliation(s)
- Clément Offret
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florie Desriac
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Patrick Le Chevalier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Camille Jégou
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Yannick Fleury
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
15
|
Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Zhang S, Yang JL, Wang X. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol 2015; 99:10127-39. [PMID: 26264135 PMCID: PMC4643108 DOI: 10.1007/s00253-015-6865-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12 ± 5 %) and translucent (frequency of 5 ± 3 %), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | | | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
| |
Collapse
|
16
|
Torres-Crespo N, Martínez-Ruiz F, González-Muñoz MT, Bedmar EJ, De Lange GJ, Jroundi F. Role of bacteria in marine barite precipitation: a case study using Mediterranean seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:562-571. [PMID: 25647371 DOI: 10.1016/j.scitotenv.2015.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Marine bacteria isolated from natural seawater were used to test their capacity to promote barite precipitation under laboratory conditions. Seawater samples were collected in the western and eastern Mediterranean at 250 m and 200 m depths, respectively, since marine barite formation is thought to occur in the upper water column. The results indicate that Pseudoalteromonas sp., Idiomarina sp. and Alteromonas sp. actually precipitate barite under experimental conditions. Barite precipitates show typical characteristics of microbial precipitation in terms of size, morphology and composition. Initially, a P-rich phase precipitates and subsequently evolves to barite crystals with low P contents. Under laboratory conditions barite formation correlates with extracellular polymeric substances (EPS) production. Barite precipitates are particularly abundant in cultures where EPS production is similarly abundant. Our results further support the idea that bacteria may provide appropriate microenvironments for mineral precipitation in the water column. Therefore, bacterial production in the past ocean should be considered when using Ba proxies for paleoproductivity reconstructions.
Collapse
Affiliation(s)
- N Torres-Crespo
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - F Martínez-Ruiz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - M T González-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain.
| | - E J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain.
| | - G J De Lange
- Department of Earth Sciences, Geosciences Faculty, Utrecht University, Budapestlaan 4, P.O. Box 80021, 3584 CD Utrecht, The Netherlands.
| | - F Jroundi
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain.
| |
Collapse
|
17
|
Zhang M, Yang F, Pasupuleti S, Oh JK, Kohli N, Lee IS, Perez K, Verkhoturov SV, Schweikert EA, Jayaraman A, Cisneros-Zevallos L, Akbulut M. Preventing adhesion of Escherichia coli O157:H7 and Salmonella Typhimurium LT2 on tomato surfaces via ultrathin polyethylene glycol film. Int J Food Microbiol 2014; 185:73-81. [DOI: 10.1016/j.ijfoodmicro.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 12/28/2022]
|
18
|
Mieszkin S, Callow ME, Callow JA. Interactions between microbial biofilms and marine fouling algae: a mini review. BIOFOULING 2013; 29:1097-1113. [PMID: 24047430 DOI: 10.1080/08927014.2013.828712] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Natural and artificial substrata immersed in the marine environment are typically colonized by microorganisms, which may moderate the settlement/recruitment of algal spores and invertebrate larvae of macrofouling organisms. This mini-review summarizes the major interactions occurring between microbial biofilms and marine fouling algae, including their effects on the settlement, growth and morphology of the adult plants. The roles of chemical compounds that are produced by both bacteria and algae and which drive the interactions are reviewed. The possibility of using such bioactive compounds to control macrofouling will be discussed.
Collapse
Affiliation(s)
- Sophie Mieszkin
- a School of Biosciences, University of Birmingham , Birmingham , UK
| | | | | |
Collapse
|
19
|
Chellaram C, Raja P, John AA, Krithika S. Antagonistic effect of epiphytic bacteria from marine algae, southeastern India. Pak J Biol Sci 2013; 16:431-4. [PMID: 24498807 DOI: 10.3923/pjbs.2013.431.434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aim of this study was to evaluate the antagonistic potential of epibiotic bacteria from seaweeds, Ulva lactuca, Dictyota dichotoma and Padina tetrastromatica against some potent human pathogens. The epibiotic bacteria of Ulva lactuca shows higher level of inhibition properties than the other species. The strain UL1 shows broad spectrum inhibitory activity against 7 pathogens. The inhibitory level of epibiotic bacteria ranged from low to moderate activity. The present investigation suggests that the epibiotic bacteria are good source for the isolation of antibacterial compounds of biomedical importance. The compounds can further be purified and can used to save mankind from dreadful diseases.
Collapse
Affiliation(s)
- C Chellaram
- Department of Biomedical Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai-600 062, Tamilnadu, India
| | - P Raja
- Department of Zoology, St. Xavier's College, Palayamkottai, Tirunelveli, Tamilnadu, India
| | - A Alex John
- Department of Biomedical Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai-600 062, Tamilnadu, India
| | - S Krithika
- Department of Research and Development, Sathyabama University, Chennai, Tamilnadu, India
| |
Collapse
|
20
|
Harder T, Lau SCK, Dobretsov S, Fang TK, Qian PY. A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 2012; 43:337-47. [PMID: 19719665 DOI: 10.1111/j.1574-6941.2003.tb01074.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract Different bacterial community profiles were observed on the soft coral Dendronephthya sp. and an inanimate reference site using terminal restriction fragment length polymorphism analysis of bacterial community DNA. To correlate the observation with a chemical defense mechanism against bacterial epibiosis, antibacterial effects of coral tissue extracts and waterborne products of coral-associated bacterial isolates (11 morphotypes) were tested against indigenous benthic bacterial isolates (33 morphotypes) obtained in the vicinity of the coral colonies. The coral tissue extracts and waterborne products of coral-associated bacteria inhibited growth and attachment of indigenous bacterial isolates, suggesting an endogenous chemical and an exogenous biological mechanism against bacterial epibiosis in this soft coral.
Collapse
Affiliation(s)
- Tilmann Harder
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, SAR Hong Kong, PR China
| | | | | | | | | |
Collapse
|
21
|
Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 2012; 41:47-58. [PMID: 19709238 DOI: 10.1111/j.1574-6941.2002.tb00965.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract Members of the marine bacterial genus Pseudoalteromonas have been found in association with living surfaces and are suggested to produce bioactive compounds against settlement of algal spores, invertebrate larvae, bacteria and fungi. To determine the extent by which these antifouling activities and the production of bioactive compounds are distributed amongst the members of the genus Pseudoalteromonas, 10 different Pseudoalteromonas species mostly derived from different host organisms were tested in a broad range of biofouling bioassays. These assays included the settlement of larvae of two ubiquitous invertebrates Hydroides elegans and Balanus amphitrite as well as the settlement of spores of the common fouling algae Ulva lactuca and Polysiphonia sp. The growth of bacteria and fungi, which are the initial fouling organisms on marine surfaces, was also assayed in the presence of each of the 10 Pseudoalteromonas species. It was found that most members of this genus produced a variety of bioactive compounds. The broadest range of inhibitory activities was expressed by Pseudoalteromonas tunicata which inhibited all target fouling organisms. Only two species, Pseudoalteromonas haloplanktis and Pseudoalteromonas nigrifaciens, displayed negligible activity in the bioassays. These were also the only two non-pigmented species tested in this study which indicates a correlation between production of bioactive compounds and expression of pigment. Three members, P. tunicata, Pseudoalteromonas citrea and Pseudoalteromonas rubra, were demonstrated to express autoinhibitory activity. It is suggested that most Pseudoalteromonas species are efficient producers of antifouling agents and that the production of inhibitory compounds by surface associated Pseudoalteromonas species may aid the host against colonisation of its surface.
Collapse
Affiliation(s)
- Carola Holmström
- School of Microbiology and Immunology, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
22
|
Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae. BIOFOULING 2012; 28:953-968. [PMID: 23004017 DOI: 10.1080/08927014.2012.723696] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous studies have shown that bacterial biofilms formed from natural seawater (NSW) enhance the settlement of spores of the green alga Ulva linza, while single-species biofilms may enhance or reduce settlement, or have no effect at all. However, the effect of biofilms on the adhesion strength of algae, and how that may be influenced by coating/surface properties, is not known. In this study, the effect of biofilms formed from natural seawater and the marine bacterium Cobetia marina, on the settlement and the adhesion strength of spores and sporelings of the macroalga U. linza and the diatom Navicula incerta, was evaluated on Intersleek(®) 700, Intersleek(®) 900, poly(dimethylsiloxane) and glass. The settlement and adhesion strength of these algae were strongly influenced by biofilms and their nature. Biofilms formed from NSW enhanced the settlement (attachment) of both algae on all the surfaces while the effect of biofilms formed from C. marina varied with the coating type. The adhesion strength of spores and sporelings of U. linza and diatoms was reduced on all the surfaces biofilmed with C. marina, while adhesion strength on biofilms formed from NSW was dependent on the alga (and on its stage of development in the case of U. linza), and coating type. The results illustrate the complexity of the relationships between fouling algae and bacterial biofilms and suggest the need for caution to avoid over-generalisation.
Collapse
Affiliation(s)
- Sophie Mieszkin
- School of Biosciences, University of Birmingham, Birmingham B12 2TT, UK.
| | | | | | | |
Collapse
|
23
|
Vynne NG, Månsson M, Nielsen KF, Gram L. Bioactivity, chemical profiling, and 16S rRNA-based phylogeny of Pseudoalteromonas strains collected on a global research cruise. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1062-1073. [PMID: 21305330 DOI: 10.1007/s10126-011-9369-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/18/2011] [Indexed: 05/30/2023]
Abstract
One hundred one antibacterial Pseudoalteromonas strains that inhibited growth of a Vibrio anguillarum test strain were collected on a global research cruise (Galathea 3), and 51 of the strains repeatedly demonstrated antibacterial activity. Here, we profile secondary metabolites of these strains to determine if particular compounds serve as strain or species markers and to determine if the secondary metabolite profile of one strain represents the bioactivity of the entire species. 16S rRNA gene similarity divided the strains into two primary groups: One group (51 strains) consisted of bacteria which retained antibacterial activity, 48 of which were pigmented, and another group (50 strains) of bacteria which lost antibacterial activity upon sub-culturing, two of which were pigmented. The group that retained antibacterial activity consisted of six clusters in which strains were identified as Pseudoalteromonas luteoviolacea, Pseudoalteromonas aurantia, Pseudoalteromonas phenolica, Pseudoalteromonas ruthenica, Pseudoalteromonas rubra, and Pseudoalteromonas piscicida. HPLC-UV/VIS analyses identified key peaks, such as violacein in P. luteoviolacea. Some compounds, such as a novel bromoalterochromide, were detected in several species. HPLC-UV/VIS detected systematic intra-species differences for some groups, and testing several strains of a species was required to determine these differences. The majority of non-antibacterial, non-pigmented strains were identified as Pseudoalteromonas agarivorans, and HPLC-UV/VIS did not further differentiate this group. Pseudoalteromonas retaining antibacterial were more likely to originate from biotic or abiotic surfaces in contrast to planktonic strains. Hence, the pigmented, antibacterial Pseudoalteromonas have a niche specificity, and sampling from marine biofilm environments is a strategy for isolating novel marine bacteria that produce antibacterial compounds.
Collapse
Affiliation(s)
- Nikolaj G Vynne
- National Food Institute, Technical University of Denmark, Søltofts Plads, bldg. 221, 2800, Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
24
|
Bioactive pigments from marine bacteria: applications and physiological roles. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:670349. [PMID: 21961023 PMCID: PMC3180183 DOI: 10.1155/2011/670349] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022]
Abstract
Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. Chemical structures of the bioactive compounds discussed are also presented.
Collapse
|
25
|
Abstract
Planctomycetes associated with 12 macroalgae from the north coast of Portugal were isolated, using an improved method. A total of 138 isolates were found to comprise 10 operational taxonomic units (OTUs), with 65% of the strains being closely related to the species Rhodopirellula baltica. The other strains are probably new species or genera related to Rhodopirellula, Blastopirellula and Planctomyces. Some of the OTUs isolated are unique and have never been found before in previous studies. Catalyzed reporter deposition-FISH confirmed the presence of Planctomycetes on macroalgal surfaces. This study provides the first report of the cultured diversity of Planctomycetes on the epiphytic macroalgae community and presents clear evidence of their nutritional and intimate relationship.
Collapse
Affiliation(s)
- Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| | | |
Collapse
|
26
|
Barott KL, Rodriguez-Brito B, Janouškovec J, Marhaver KL, Smith JE, Keeling P, Rohwer FL. Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol 2011; 13:1192-204. [PMID: 21272183 DOI: 10.1111/j.1462-2920.2010.02419.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.
Collapse
Affiliation(s)
- Katie L Barott
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gram L, Melchiorsen J, Bruhn JB. Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:439-451. [PMID: 19823914 DOI: 10.1007/s10126-009-9233-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/20/2009] [Indexed: 05/28/2023]
Abstract
The purpose of the present study was to isolate marine culturable bacteria with antibacterial activity and hence a potential biotechnological use. Seawater samples (244) and 309 swab samples from biotic or abiotic surfaces were collected on a global Danish marine research expedition (Galathea 3). Total cell counts at the seawater surface were 5 x 10(5) to 10(6) cells/ml, of which 0.1-0.2% were culturable on dilute marine agar (20 degrees C). Three percent of the colonies cultured from seawater inhibited Vibrio anguillarum, whereas a significantly higher proportion (13%) of colonies from inert or biotic surfaces was inhibitory. It was not possible to relate a specific kind of eukaryotic surface or a specific geographic location to a general high occurrence of antagonistic bacteria. Five hundred and nineteen strains representing all samples and geographic locations were identified on the basis of partial 16S rRNA gene sequence homology and belonged to three major groups: Vibrionaceae (309 strains), Pseudoalteromonas spp. (128 strains), and the Roseobacter clade (29 strains). Of the latter, 25 strains were identified as Ruegeria mobilis or pelagia. When re-testing against V. anguillarum, only 409 (79%) retained some level of inhibitory activity. Many strains, especially Pseudoalteromonas spp. and Ruegeria spp., also inhibited Staphylococcus aureus. The most pronounced antibacterial strains were pigmented Pseudoalteromonas strains and Ruegeria spp. The inhibitory, pigmented Pseudoalteromonas were predominantly isolated in warmer waters from swabs of live or inert surfaces. Ruegeria strains were isolated from all ocean areas except for Arctic and Antarctic waters and inhibitory activity caused by production of tropodithietic acid.
Collapse
Affiliation(s)
- Lone Gram
- National Institute of Aquatic Resources, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
28
|
Inhibition of common fouling organisms in mariculture by epiphytic bacteria from the surfaces of seaweeds and invertebrates. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.chnaes.2009.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Nissimov J, Rosenberg E, Munn CB. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett 2009; 292:210-5. [PMID: 19191871 DOI: 10.1111/j.1574-6968.2009.01490.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The inhibitory properties of the microbial community of the coral mucus from the Mediterranean coral Oculina patagonica were examined. Out of 156 different colony morphotypes that were isolated from the coral mucus, nine inhibited the growth of Vibrio shiloi, a species previously shown to be a pathogen of this coral. An isolate identified as Pseudoalteromonas sp. was the strongest inhibitor of V. shiloi. Several isolates, especially one identified as Roseobacter sp., also showed a broad spectrum of action against the coral pathogens Vibrio coralliilyticus and Thallassomonas loyana, plus nine other selected Gram-positive and Gram-negative bacteria. Inoculation of a previously established biofilm of the Roseobacter strain with V. shiloi led to a 5-log reduction in the viable count of the pathogen within 3 h, while inoculation of a Pseudoalteromonas biofilm led to complete loss of viability of V. shiloi after 3 h. These results support the concept of a probiotic effect on microbial communities associated with the coral holobiont.
Collapse
Affiliation(s)
- Jozef Nissimov
- School of Biological Sciences, University of Plymouth, Plymouth, UK
| | | | | |
Collapse
|
30
|
Huggett MJ, Nedved BT, Hadfield MG. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. BIOFOULING 2009; 25:387-399. [PMID: 19306143 DOI: 10.1080/08927010902823238] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.
Collapse
|
31
|
Marine Epibiosis: Concepts, Ecological Consequences and Host Defence. MARINE AND INDUSTRIAL BIOFOULING 2008. [DOI: 10.1007/978-3-540-69796-1_12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Kanagasabhapathy M, Sasaki H, Nagata S. Phylogenetic identification of epibiotic bacteria possessing antimicrobial activities isolated from red algal species of Japan. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9746-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Bowman JP. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus pseudoalteromonas. Mar Drugs 2007; 5:220-41. [PMID: 18463726 PMCID: PMC2365693 DOI: 10.3390/md504220] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/14/2007] [Indexed: 02/01/2023] Open
Abstract
The genus Pseudoalteromonas is a marine group of bacteria belonging to the class Gammaproteobacteria that has come to attention in the natural product and microbial ecology science fields in the last decade. Pigmented species of the genus have been shown to produce an array of low and high molecular weight compounds with antimicrobial, anti-fouling, algicidal and various pharmaceutically-relevant activities. Compounds formed include toxic proteins, polyanionic exopolymers, substituted phenolic and pyrolle-containing alkaloids, cyclic peptides and a range of bromine-substituted compounds. Ecologically, Pseudoalteromonas appears significant and to date has been shown to influence biofilm formation in various marine econiches; involved in predator-like interactions within the microbial loop; influence settlement, germination and metamorphosis of various invertebrate and algal species; and may also be adopted by marine flora and fauna as defensive agents. Studies have been so far limited to a relatively small subset of strains compared to the known diversity of the genus suggesting that many more discoveries of novel natural products as well as ecological connections these may have in the marine ecosystem remain to be made.
Collapse
Affiliation(s)
- John P Bowman
- Tasmania Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Sandy Bay, Private Bag 54, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
34
|
Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl Environ Microbiol 2007; 73:7844-52. [PMID: 17965210 DOI: 10.1128/aem.01543-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria that produce inhibitory compounds on the surface of marine algae are thought to contribute to the defense of the host plant against colonization of fouling organisms. However, the number of bacterial cells necessary to defend against fouling on the plant surface is not known. Pseudoalteromonas tunicata and Phaeobacter sp. strain 2.10 (formerly Roseobacter gallaeciensis) are marine bacteria often found in association with the alga Ulva australis and produce a range of extracellular inhibitory compounds against common fouling organisms. P. tunicata and Phaeobacter sp. strain 2.10 biofilms with cell densities ranging from 10(2) to 10(8) cells cm(-2) were established on polystyrene petri dishes. Attachment and settlement assays were performed with marine fungi (uncharacterized isolates from U. australis), marine bacteria (Pseudoalteromonas gracilis, Alteromonas sp., and Cellulophaga fucicola), invertebrate larvae (Bugula neritina), and algal spores (Polysiphonia sp.) and gametes (U. australis). Remarkably low cell densities (10(2) to 10(3) cells cm(-2)) of P. tunicata were effective in preventing settlement of algal spores and marine fungi in petri dishes. P. tunicata also prevented settlement of invertebrate larvae at densities of 10(4) to 10(5) cells cm(-2). Similarly, low cell densities (10(3) to 10(4)cells cm(-2)) of Phaeobacter sp. strain 2.10 had antilarval and antibacterial activity. Previously, it has been shown that abundance of P. tunicata on marine eukaryotic hosts is low (<1 x 10(3) cells cm(-2)) (T. L. Skovhus et al., Appl. Environ. Microbiol. 70:2373-2382, 2004). Despite such low numbers of P. tunicata on U. australis in situ, our data suggest that P. tunicata and Phaeobacter sp. strain 2.10 are present in sufficient quantities on the plant to inhibit fouling organisms. This strongly supports the hypothesis that P. tunicata and Phaeobacter sp. strain 2.10 can play a role in defense against fouling on U. australis at cell densities that commonly occur in situ.
Collapse
|
35
|
Ortega-Morales BO, Chan-Bacab MJ, Miranda-Tello E, Fardeau ML, Carrero JC, Stein T. Antifouling activity of sessile bacilli derived from marine surfaces. J Ind Microbiol Biotechnol 2007; 35:9-15. [PMID: 17909869 DOI: 10.1007/s10295-007-0260-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Marine biofilms are a virtually untapped source of bioactive molecules that may find application as novel antifoulants in the marine paint industry. This study aimed at determining the potential of marine biofilm bacteria to produce novel biomolecules with potential application as natural antifoulants. Nine representative strains were isolated from a range of surfaces and were grown in YEB medium and harvested during the late exponential growth phase. Bacterial biomass and spent culture medium were extracted with ethanol and ethyl acetate, respectively. Extracts were assayed for their antifouling activity using two tests: (1) antimicrobial well diffusion test against a common fouling bacterium, Halomonas marina, and (2) anti-crustacean activity test using Artemia salina. Our results showed that none of the ethanolic extracts (bacterial biomass) were active in either test. In contrast, most of the organic extracts had antimicrobial activity (88%) and were toxic towards A. salina (67%). Sequencing of full 16 S ribosomal DNA analysis showed that the isolates were related to Bacillus mojavensis and Bacillus firmus. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) profiling of ethyl acetate extracts of culture supernatants showed that these species produce the bioactive lipopeptides surfactin A, mycosubtilin and bacillomycin D.
Collapse
Affiliation(s)
- Benjamín Otto Ortega-Morales
- Departamento de Recursos del Mar, CINVESTAV Unidad Mérida, carretera antigua a Progreso Km. 6, Cordemex C.P. 97310, Mérida, Yucatán, Mexico.
| | | | | | | | | | | |
Collapse
|
36
|
Joint I, Tait K, Wheeler G. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc Lond B Biol Sci 2007; 362:1223--33. [PMID: 17360272 PMCID: PMC2435585 DOI: 10.1098/rstb.2007.2047] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green seaweed Ulva has been shown to detect signal molecules produced by bacteria. Biofilms that release N-acylhomoserine lactones (AHLs) attract zoospores--the motile reproductive stages of Ulva. The evidence for AHL involvement is based on several independent lines of evidence, including the observation that zoospores are attracted to wild-type bacteria that produce AHLs but are not attracted to mutants that do not produce signal molecules. Synthetic AHL also attracts zoospores and the attraction is lost in the presence of autoinducer inactivation (AiiA) protein. The mechanism of attraction is not chemotactic but involves chemokinesis. When zoospores detect AHLs, the swimming rate is reduced and this results in accumulation of cells at the source of the AHL. It has been demonstrated that the detection of AHLs results in calcium influx into the zoospore. This is the first example of a calcium signalling event in a eukaryote in response to bacterial quorum sensing molecules. The role of AHLs in the ecology of Ulva is discussed. It is probable that AHLs act as cues for the settlement of zoospores, rather than being directly involved as a signalling mechanism.
Collapse
Affiliation(s)
- Ian Joint
- Plymouth Marine Laboratory, The Hoe, Plymouth, UK.
| | | | | |
Collapse
|
37
|
Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:399-410. [PMID: 17497196 DOI: 10.1007/s10126-007-9001-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 02/02/2007] [Indexed: 05/15/2023]
Abstract
In the marine environment, biofilms on submerged surfaces can promote or discourage the settlement of invertebrate larvae and macroalgal spores. The settlement-mediating effects of biofilms are believed to involve a variety of biofilm attributes including surface chemistry, micro-topography, and a wide range of microbial products from small-molecule metabolites to high-molecular weight extracellular polymers. The settled organisms in turn can modify microbial species composition of biofilms and thus change the biofilm properties and dynamics. A better understanding of biofilm dynamics and chemical signals released and/or stored by biofilms will facilitate the development of antifouling and mariculture technologies. This review provides a brief account of 1) existing knowledge of marine biofilms that are relevant to settlement mediation, 2) biotechnological application of biofilms with respect to developing non-toxic antifouling technologies and improving the operation of aquaculture facilities, and 3) challenges and future directions for advancing our understanding of settlement-mediating functions of biofilms and for applying this knowledge to real-life situations.
Collapse
Affiliation(s)
- P-Y Qian
- Department of Biology and Coastal Marine Lab, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| | | | | | | | | |
Collapse
|
38
|
Skovhus TL, Holmström C, Kjelleberg S, Dahllöf I. Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. FEMS Microbiol Ecol 2007; 61:348-61. [PMID: 17573938 DOI: 10.1111/j.1574-6941.2007.00339.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The genus Pseudoalteromonas has attracted interest because it has frequently been found in association with eukaryotic hosts, and because many Pseudoalteromonas species produce biologically active compounds. One distinct group of Pseudoalteromonas species is the antifouling subgroup containing Pseudoalteromonas tunicata and Ps. ulvae, which both produce extracellular compounds that inhibit growth and colonization by different marine organisms. PCR primers targeting the 16S rRNA gene of the genus Pseudoalteromonas and the antifouling subgroup were developed and applied in this study. Real-time quantitative PCR (qPCR) was applied to determine the relative bacterial abundance of the genus and the antifouling subgroup, and denaturing gradient gel electrophoresis (DGGE) was applied to study the diversity of the genus in 11 different types of marine samples from Danish coastal waters. The detection of Ps. tunicata that contain the antifouling subgroup was achieved through specific PCR amplification of the antibacterial protein gene (alpP). The Pseudoalteromonas species accounted for 1.6% of the total bacterial abundance across all samples. The Pseudoalteromonas diversity on the three unfouled marine organisms Ciona intestinalis, Ulva lactuca and Ulvaria fusca was found to be low, and Ps. tunicata was only detected on these three hosts, which all contain accessible cellulose polymers in their cell walls.
Collapse
Affiliation(s)
- Torben L Skovhus
- Department of Microbiology, University of Aarhus, Aarhus C, Denmark
| | | | | | | |
Collapse
|
39
|
Dalisay DS, Webb JS, Scheffel A, Svenson C, James S, Holmström C, Egan S, Kjelleberg S. A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiology (Reading) 2006; 152:2875-2883. [PMID: 17005969 DOI: 10.1099/mic.0.29158-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study demonstrates that attachment of the marine bacterium Pseudoalteromonas tunicata to the cellulose-containing surface of the green alga Ulva australis is mediated by a mannose-sensitive haemagglutinin (MSHA-like) pilus. We have identified an MSHA pilus biogenesis gene locus in P. tunicata, termed mshI1I2JKLMNEGFBACDOPQ, which shows significant homology, with respect to its genetic characteristics and organization, to the MSHA pilus biogenesis gene locus of Vibrio cholerae. Electron microscopy studies revealed that P. tunicata wild-type cells express flexible pili peritrichously arranged on the cell surface. A P. tunicata mutant (SM5) with a transposon insertion in the mshJ region displayed a non-piliated phenotype. Using SM5, it has been demonstrated that the MSHA pilus promotes attachment of P. tunicata wild-type cells in polystyrene microtitre plates, as well as to microcrystalline cellulose and to the living surface of U. australis. P. tunicata also demonstrated increased pilus production in response to cellulose and its monomer constituent cellobiose. The MSHA pilus thus functions as a determinant of attachment in P. tunicata, and it is proposed that an understanding of surface sensing mechanisms displayed by P. tunicata will provide insight into specific ecological interactions that occur between this bacterium and higher marine organisms.
Collapse
MESH Headings
- Bacterial Adhesion/genetics
- Bacterial Proteins/genetics
- Cellulose/metabolism
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae Proteins/physiology
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/physiology
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Mannose/metabolism
- Mannose-Binding Lectin/genetics
- Mannose-Binding Lectin/metabolism
- Mannose-Binding Lectin/physiology
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Insertional
- Polystyrenes/metabolism
- Pseudoalteromonas/genetics
- Pseudoalteromonas/physiology
- Sequence Analysis, DNA
- Ulva/microbiology
Collapse
Affiliation(s)
- Doralyn S Dalisay
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeremy S Webb
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - André Scheffel
- Max-Planck-Institute for Marine Microbiology, Celsiusstraße 1 28359, Bremen, Germany
| | - Charles Svenson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sally James
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Carola Holmström
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Suhelen Egan
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Staffan Kjelleberg
- Centre for Marine Biofouling and Bio-innovation, University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Marshall K, Joint I, Callow ME, Callow JA. Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. MICROBIAL ECOLOGY 2006; 52:302-10. [PMID: 16897307 DOI: 10.1007/s00248-006-9060-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 01/09/2006] [Indexed: 05/10/2023]
Abstract
The green marine macroalga, Ulva linza, adopts an "atypical" form when grown in the absence of bacteria. Twenty unique strains of periphytic bacteria, isolated from three species of Ulva, were identified by 16S rDNA sequencing. These isolates were assessed for their effect on the growth and morphological development of axenic plantlets of U. linza. Results showed that the effect of bacterial strains was strain- but not taxon-specific. Thirteen isolates returned the aberrant morphology to normal and of these, five also significantly increased growth rate. One isolate increased growth, but had no effect on morphology. Biofilms of some of these isolates stimulated the settlement of Ulva zoospores but there was no correlation between bacterial isolates that stimulated zoospore settlement and those that initiated changes in morphology and/or growth of the cultured alga.
Collapse
Affiliation(s)
- Katrina Marshall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
41
|
Kanagasabhapathy M, Sasaki H, Haldar S, Yamasaki S, Nagata S. Antibacterial activities of marine epibiotic bacteria isolated from brown algae of Japan. ANN MICROBIOL 2006. [DOI: 10.1007/bf03175000] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Ayala C, Clarke M, Riquelme C. Inhibition of byssal formation in Semimytilus algosus (Gould, 1850) by a film-forming bacterium isolated from biofouled substrata in northern Chile. BIOFOULING 2006; 22:61-8. [PMID: 16551562 DOI: 10.1080/08927010500533122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Semimytilus algosus is a small mussel species that fouls artificial culture systems of the scallop Argopecten purpuratus (Lamarck, 1819) in the north of Chile. Since biofouling organisms are a serious problem in culture, competing with the scallops for food and oxygen, environmentally-friendly methods are required to mitigate the effects of this fouling in the culture systems. The present study reports the evaluation of the inhibitory effect of biofilms and extracellular products (EP) of the bacterium Alteromonas strain Ni1-LEM on the byssal formation of S. algosus juveniles. Laboratory bioassays were carried out to determine the reattachment, exploratory behaviour and/or byssal thread production of the mussel in plastic Petri dishes containing bacterial biofilms, different dilutions of EP, and EP incorporated in a test substratum. It was concluded from the results that culture supernatants of the Alteromonas tested had an inhibitory effect on reattachment by S. algosus.
Collapse
Affiliation(s)
- Cristina Ayala
- Laboratorio de Ecología Microbiana, Facultad de Recursos del Mar, Universidad de Antofagasta, Chile.
| | | | | |
Collapse
|
43
|
Dobretsov S, Dahms HU, Qian PY. Inhibition of biofouling by marine microorganisms and their metabolites. BIOFOULING 2006; 22:43-54. [PMID: 16551560 DOI: 10.1080/08927010500504784] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Biology/Coastal Marine Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China
| | | | | |
Collapse
|
44
|
Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, Jürgens K. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 2004; 70:1593-9. [PMID: 15006783 PMCID: PMC368400 DOI: 10.1128/aem.70.3.1593-1599.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics.
Collapse
Affiliation(s)
- Carsten Matz
- Department of Physiological Ecology, Max Planck Institute for Limnology, D-24302 Plön, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Patel P, Callow ME, Joint I, Callow JA. Specificity in the settlement -- modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 2003; 5:338-49. [PMID: 12713460 DOI: 10.1046/j.1462-2920.2003.00407.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that the rate of settlement of zoospores of the green alga Enteromorpha is stimulated by mixed microbial biofilms and that the number of zoospores settling is positively correlated with the number of bacteria in the biofilm. In the present study the specificity of this relationship has been investigated. Ninety-nine strains of marine bacteria were isolated from natural biofilms on rocks and the surface of Enteromorpha plants. Isolates were screened by denaturing gradient gel electrophoresis (DGGE) to eliminate replicates and 16S rDNA sequencing identified a total of 37 unique strains. Phylogenetic analysis revealed that the isolated bacterial strains belonged to three groups gamma-Proteobacteria (28 strains), Cytophaga-Flavobacteria-Bacteroid (CFB) group (six strains) and alpha-Proteobacteria (one strain). Two strains were unassigned, showing < 93% sequence similarity with the CFB group. The main genera of gamma-Proteobacteria were Pseudoalteromonas (14 strains), Vibrio (five strains), Shewanella (five strains), Halomonas (three strains) and Pseudomonas (one strain). Spore settlement experiments were conducted on single-species biofilms, developed for different times on glass slides. The effect of correcting spore settlement values for biofilm density was evaluated. Results showed that the effect of bacterial strains on spore settlement was strain- but not taxon-specific and activity varied with the age of the biofilm. However, most of the strains belonging to genera Vibrio and Shewanella showed stimulation. Pseudoalteromonas strains showed a range of effects including settlement-inhibiting, paralysing and lysing activities. Spatial analysis of bacterial density in the presence and absence of spores revealed a range of different types of association between spores and bacteria. Overall, the spatial association between spores and bacteria appears to be independent of the overall quantitative influence of bacterial cells on spore settlement.
Collapse
Affiliation(s)
- Pratixa Patel
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
46
|
Abstract
Colonization of surfaces in marine benthic environments is often one of the most significant moments in the life history of benthic organisms, representing, for example, a change from a planktonic to a benthic existence, a shift from a mobile to a sessile life form, or the initiation of pathogenesis. Many of the surfaces that are colonized are, in fact, other marine organisms, and in a general sense there is widespread evidence that specific chemical cues derived from marine organisms affect colonization by both marine prokaryotes and eukaryotes. However, detailed information for any one system on the nature of such cues, their distribution in situ, and their effects on the demography of colonizers is rare. Here, we selectively review the literature on chemical cues for colonization in the sea, focussing on contrasts between positive (inducers) and negative (inhibitors, deterrents) cues and on prokaryote/eukaryote interactions. We also consider whether generalized life history or natural history characteristics of colonizers (i.e., the mobility of a propagule, the extent to which a species is a habitat generalist or specialist, etc.) affect their response to chemical cues, and we touch briefly on some recent highlights relevant to the critical interplay between hydrodynamics and chemistry. A number of important methodological concerns are now being addressed through the introduction of field assays and analyses for chemical cues, and through molecular techniques for the characterization of microbial biofilms. These developments are encouraging, as is the increasingly multidisciplinary and cross-taxonomic approach to research in this area.
Collapse
Affiliation(s)
- Peter D Steinberg
- School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, New South Wales 2052 Australia.
| | | | | |
Collapse
|
47
|
Egan S, James S, Holmström C, Kjelleberg S. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ Microbiol 2002; 4:433-42. [PMID: 12153584 DOI: 10.1046/j.1462-2920.2002.00322.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudoalteromonas tunicata is a marine bacterium with the ability to prevent biofouling by the production of at least four target-specific compounds. In addition to these antifouling compounds, P. tunicata produces at least two pigments. These include a yellow and a purple pigment which, when combined, give the bacterium a dark green appearance. Transposon mutagenesis was used in this study to investigate the correlation between pigment production and the expression of specific antifouling phenotypes in P. tunicata. Four different categories of pigmentation mutants were isolated including yellow, dark-purple, light-purple and white mutants. The mutants were tested for their ability to inhibit the settlement of invertebrate larvae, algal spore germination, fungal growth and bacterial growth. The results showed that the yellow-pigmented mutants retained full antifouling activity, whereas the purple and white mutant strains had lost some, or all, of their ability to inhibit target organisms. This demonstrates that the loss of antifouling capabilities correlates with the loss of yellow pigment and not purple pigment. Sequencing and analysis of the genes disrupted by the transposons in these mutants identified a number of potential biosynthetic enzymes and transport systems involved in the synthesis and regulation of pigmentation and fouling inhibitors in this organism.
Collapse
Affiliation(s)
- Suhelen Egan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
48
|
Egan S, James S, Kjelleberg S. Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. Appl Environ Microbiol 2002; 68:372-8. [PMID: 11772647 PMCID: PMC126587 DOI: 10.1128/aem.68.1.372-378.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dark green pigmented marine bacterium Pseudoalteromonas tunicata colonizes living surfaces and produces a range of extracellular compounds that inhibit common fouling organisms, including marine invertebrate larvae, algae, bacteria, and fungi. We have observed a positive correlation between the antifouling activity of P. tunicata strain D2 and the expression of pigmentation. To address the hypothesis that pigmentation and antifouling may be jointly regulated in this organism and to begin to identify potential regulatory elements, we used transposon mutagenesis to generate a strain of P. tunicata deficient in antifouling activity. The data presented here describe the phenotypic and molecular characterization of a nonpigmented transposon mutant strain of P. tunicata (D2W2). Analyses of the antifouling capabilities of D2W2 demonstrate that this strain is deficient in the ability to inhibit each of the target fouling organisms. Genetic analysis of D2W2 identified a gene, designated wmpR (white mutant phenotype), with high sequence similarity to transcriptional regulators ToxR from Vibrio cholerae and CadC from Escherichia coli. Two-dimensional polyacrylamide gel electrophoresis analysis revealed that WmpR is essential for the expression of a significant subset of stationary-phase-induced proteins likely to be important for the synthesis of fouling inhibitors. The identification of a gene involved in the regulation of expression of antifouling phenotypes will contribute to the understanding of the interactions between bacteria and other surface-colonizing organisms in the marine environment.
Collapse
Affiliation(s)
- Suhelen Egan
- School of Microbiology and Immunology, University of New South Wales, Sydney 2052, New South Wales, Australia
| | | | | |
Collapse
|
49
|
Armstrong E, Boyd KG, Burgess JG. Prevention of marine biofouling using natural compounds from marine organisms. BIOTECHNOLOGY ANNUAL REVIEW 2001; 6:221-41. [PMID: 11193296 DOI: 10.1016/s1387-2656(00)06024-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
All surfaces that are submerged in the sea rapidly become covered by a biofilm. This process, called biofouling, has substantial economic consequences. Paints containing tri-butyl-tin (TBT) and copper compounds are used to protect marine structures by reducing biofouling. However, these compounds have damaging effects on the marine environment, as they are not biodegradable. It has been noted that many seaweeds and invertebrates found in the sea are not covered by a mature biofilm. This is due to the release of compounds into the surrounding seawater that deter the settlement of fouling organisms. In addition, seaweeds and invertebrates have bacteria on their surfaces that produce compounds to deter settling organisms. The production of compounds by bacteria and their living hosts work in concert to protect the hosts' surfaces. All of these compounds can be collected so they may be natural alternatives to TBT and copper compounds. However, the benefits associated with the use of bacteria as sources of these compounds means that bacteria are the organisms of choice for obtaining natural products for antifouling coatings.
Collapse
Affiliation(s)
- E Armstrong
- Department of Biological Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
| | | | | |
Collapse
|
50
|
Egan S, James S, Holmström C, Kjelleberg S. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol Ecol 2001; 35:67-73. [PMID: 11248391 DOI: 10.1111/j.1574-6941.2001.tb00789.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A collection of 56 bacteria isolated from different surfaces in the marine environment were assayed for their effects on the germination of spores from the common green alga Ulva lactuca. Thirteen bacterial isolates were shown to inhibit spore germination. Of these bacteria, Pseudoalteromonas tunicata displayed the most pronounced effects against algal spores. Further characterisation of the anti-algal activity of P. tunicata was performed and it was found that this bacterium produces an extracellular component with specific activity toward algal spores that is heat-sensitive, polar and between 3 and 10 kDa in size. This biologically active compound was also found to prevent the germination of spores from the red alga Polysiphonia sp. and, given the widespread occurrence of P. tunicata in a range of marine habitats, this may suggest that it is effective against a variety of marine algae.
Collapse
|