1
|
Bishayee A, Kavalakatt J, Sunkara C, Johnson O, Zinzuwadia SS, Collignon TE, Banerjee S, Barbalho SM. Litchi (Litchi chinensis Sonn.): A comprehensive and critical review on cancer prevention and intervention. Food Chem 2024; 457:140142. [PMID: 38936122 DOI: 10.1016/j.foodchem.2024.140142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical fruit with various health benefits. The objective of this study is to present a thorough analysis of the cancer preventive and anticancer therapeutic properties of litchi constituents and phytocompounds. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis criteria were followed in this work. Various litchi extracts and constituents were studied for their anticancer effects. In vitro studies showed that litchi-derived components reduced cell proliferation, induced cytotoxicity, and promoted autophagy via increased cell cycle arrest and apoptosis. Based on in vivo studies, litchi flavonoids and other extracted constituents significantly reduced tumor size, number, volume, and metastasis. Major signaling pathways impacted by litchi constituents were shown to stimulate proapoptotic, antiproliferative, and antimetastatic activities. Despite promising antineoplastic activities, additional research, especially in vivo and clinical studies, is necessary before litchi-derived products and phytochemicals can be used for human cancer prevention and intervention.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Joachim Kavalakatt
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Charvi Sunkara
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Olivia Johnson
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Taylor E Collignon
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Sandra Maria Barbalho
- School of Food and Technology of Marília (FATEC), Marília, 17500-000, São Paulo, Brazil; School of Medicine, University of Marília (UNIMAR), Marília, 17012-150, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17012-150, Sao Paulo, Brazil
| |
Collapse
|
2
|
García-Ponce R, Hernández-Escareño JJ, Cruz-Valdez JC, Galindo-Rodríguez SA, Heya MS, Villarreal-Villarreal JP. Ixodicidal effect of extracts from Cordia boissieri, Artemisia ludoviciana and Litchi chinensis on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). BRAZ J BIOL 2023; 84:e264425. [PMID: 36722676 DOI: 10.1590/1519-6984.264425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/14/2022] [Indexed: 02/02/2023] Open
Abstract
The ixodicidal activity of the methanolic extracts of Artemisia ludoviciana (Astereceae), Cordia boissieri (Boraginaceae) and Litchi chinensis (Sapindaceae) against two field populations of Rhipicephalus (Boophilus) microplus from the state of Nuevo Leon (NL) and Veracruz (VER) was evaluated. The extract of L. chinensis in the concentration of 150 mg/ml showed efficacies of 100% and 99% against engorged females and mortalities of 98% and 99% against larvae. C. boissieri in the same concentration showed efficacies of 71% and 37% against engorged adults and mortalities of 33.04% and 10.33% against larvae and A. ludoviciana had efficacies of 94% and 83% in adults and mortalities of 89.39% and 89.21% against larvae in both populations respectively. The enzymatic activity of Acetylcholinesterase (AChE), Carboxylesterase (CaE), Glutathione-S-Transferase (GST) and Alkaline Phosphatase (ALP) was measured in both populations of ticks. As a result, a significant difference between both populations was shown, being the VER population the one that exhibited a higher enzymatic activity (p ≤ 0.05). It can be concluded that the methanolic extract of the seed of L. chinensis shows potential ixodicidal activity and can be used as an alternative source of tick control, however, prior characterization, toxicity and formulation studies are necessary.
Collapse
Affiliation(s)
- R García-Ponce
- Universidad Autónoma de Nuevo León - UANL, School of Veterinary Medicine and Zootechnics, Department of Microbiology and Parasitology, Laboratory of Microbiology and Parasitology, Cd. General Escobedo, Nuevo León, México
| | - J J Hernández-Escareño
- Universidad Autónoma de Nuevo León - UANL, School of Veterinary Medicine and Zootechnics, Department of Microbiology and Parasitology, Laboratory of Microbiology and Parasitology, Cd. General Escobedo, Nuevo León, México
| | - J C Cruz-Valdez
- Universidad Autónoma de Nuevo León - UANL, School of Veterinary Medicine and Zootechnics, Department of Microbiology and Parasitology, Laboratory of Microbiology and Parasitology, Cd. General Escobedo, Nuevo León, México
| | - S A Galindo-Rodríguez
- Universidad Autónoma of Nuevo León-UANL, School of Biological Sciences, Department of Chemistry, Laboratory of Analytical Chemistry, San Nicolás de los Garza, Nuevo León, México
| | - M S Heya
- Universidad Autónoma of Nuevo León-UANL, School of Biological Sciences, Department of Chemistry, Laboratory of Analytical Chemistry, San Nicolás de los Garza, Nuevo León, México
| | - J P Villarreal-Villarreal
- Universidad Autónoma de Nuevo León - UANL, School of Veterinary Medicine and Zootechnics, Department of Microbiology and Parasitology, Laboratory of Microbiology and Parasitology, Cd. General Escobedo, Nuevo León, México
| |
Collapse
|
3
|
Yao P, Gao Y, Simal-Gandara J, Farag MA, Chen W, Yao D, Delmas D, Chen Z, Liu K, Hu H, Xiao J, Rong X, Wang S, Hu Y, Wang Y. Litchi ( Litchi chinensis Sonn.): a comprehensive review of phytochemistry, medicinal properties, and product development. Food Funct 2021; 12:9527-9548. [PMID: 34664581 DOI: 10.1039/d1fo01148k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Since ancient times, litchi has been well recognized as a functional food for the management of various ailments. Many bioactives, including flavanoids, anthocyanins, phenolics, sesquiterpenes, triterpenes, and lignans, have been identified from litchi with a myriad of biological properties both in vitro and in vivo. In spite of the extensive research progress, systemic reviews regarding the bioactives of litchi are rather scarce. Therefore, it is crucial to comprehensively analyze the pharmacological activities and the structure-activity relationships of the abundant bioactives of litchi. Besides, more and more studies have focused on litchi preservation and development of its by-products, which is significant for enhancing the economic value of litchi. Based on the analysis of published articles and patents, this review aims to reveal the development trends of litchi in the healthcare field by providing a systematic summary of the pharmacological activities of its extracts, its phytochemical composition, and the nutritional and potential health benefits of litchi seed, pulp and pericarp with structure-activity relationship analysis. In addition, its by-products also exhibited promising development potential in the field of material science and environmental protection. Furthermore, this study also provides an overview of the strategies of the postharvest storage and processing of litchi.
Collapse
Affiliation(s)
- Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo 11562, Egypt.,Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Weijie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dongning Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, Dijon, F-21000, France.,NSERM Research Center U1231 - Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health Research Group, F-21000, France.,Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| | - Zhejie Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Kunmeng Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Hao Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xianglu Rong
- Guangdong Metabolic Disease Research Centre of Integrated Chinese and Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong TCM Key Laboratory for Metabolic Diseases, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yuanjia Hu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.
| |
Collapse
|
4
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
5
|
Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules 2021; 26:727. [PMID: 33573318 PMCID: PMC7866841 DOI: 10.3390/molecules26030727] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Plant Biology, Institute of Biology, Kiev National, University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, 47189-63616 Khuzestan, Iran;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Jan Kubeš
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Laura Lamilla-Tamayo
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (M.S.); (J.K.); (L.L.-T.)
| | - Ulkar Ibrahimova
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Sayyara Ibadullayeva
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2A, Az 1073 Baku, Azerbaijan; (U.I.); (S.I.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56126 Behbahan, Italy
| |
Collapse
|
6
|
Ibrahim SRM, Mohamed GA. Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:492-513. [PMID: 26342518 DOI: 10.1016/j.jep.2015.08.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Litchi chinensis Sonn. (Sapindaceae) has been widely used in many cultures for the treatment of cough, flatulence, stomach ulcers, diabetes, obesity, testicular swelling, hernia-like conditions, and epigastric and neuralgic pains. The ethnopharmacologial history of L. chinensis indicated that it possesses hypoglycemic, anticancer, antibacterial, anti-hyperlipidemic, anti-platelet, anti-tussive, analgesic, antipyretic, hemostatic, diuretic, and antiviral activities. AIM OF THE REVIEW The aim of this review is to provide up-to-date information on the botanical characterization, distribution, traditional uses, and chemical constituents, as well as the pharmacological activities and toxicity of L. chinensis. Moreover, the focus of this review is the possible exploitation of this plant to treat different diseases and to suggest future investigations. MATERIALS AND METHODS To provide an overview of the ethnopharmacology, chemical constituents, and pharmacological activities of litchi, and to reveal their therapeutic potentials and being an evidence base for further research works, information on litchi was gathered from scientific journals, books, and worldwide accepted scientific databases via a library and electronic search (PubMed, Elsevier, Google Scholar, Springer, Scopus, Web of Science, Wiley online library, and pubs.acs.org/journal/jacsat). All abstracts and full-text articles were examined. The most relevant articles were selected for screening and inclusion in this review. RESULTS A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethno-medical uses of L. chinensis have been recorded in China, India, Vietnam, Indonesia, and Philippines. Phytochemical investigation revealed that the major chemical constituents of litchi are flavonoids, sterols, triterpenens, phenolics, and other bioactive compounds. Crude extracts and pure compounds isolated from L. chinensis exhibited significant antioxidant, anti-cancer, anti-inflammatory, anti-microbial, anti-viral, anti-diabetic, anti-obesity, hepato-protective, and immunomodulatory activities. From the toxicological perspective, litchi fruit juice and extracts have been proven to be safe at a dose 1 g/kg. CONCLUSIONS Phytochemical investigations indicated that phenolics were the major bioactive components of L. chinensis with potential pharmacological activities. The ethnopharmacological relevance of L. chinensis is fully justified by the most recent findings indicating it is a useful medicinal and nutritional agent for treating a wide range of human disorders and aliments. Further investigations are needed to fully understand the mode of action of the active constituents and to fully exploit its preventive and therapeutic potentials.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
7
|
Sun MF, Yang SC, Chang KW, Tsai TY, Chen HY, Tsai FJ, Lin JG, Chen CYC. Screening from TCM Database@Taiwan and QSAR model for identifying HER2 inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.569550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Sun MF, Chang TT, Chen KC, Yang SC, Chang KW, Tsai TY, Chen HY, Tsai FJ, Lin JG, Chen CYC. Treat Alzheimer's disease by traditional Chinese medicine? MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.577074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Chang TT, Sun MF, Chang KW, Chen HY, Tsai FJ, Fisher M, Lin JG, Chen CYC. Screening from the world's largest TCM database for inhibiting DNA repair protein XRCC4. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.554550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Li CL, Chang TT, Sun MF, Chen HY, Tsai FJ, Fisher M, Chen CYC, Lee CL, Fang WC, Wong YH. Structure-based and ligand-based drug design for microsomal prostaglandin E synthase-1 inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.538054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Lai CY, Chang TT, Sun MF, Chen HY, Tsai FJ, Lin JG, Chen CYC. Molecular dynamics analysis of potent inhibitors of M2 proton channel against H1N1 swine influenza virus. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.543972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|